Answer:
<h2>9.375Nm</h2>
Explanation:
The formula for calculating torque τ = Frsin∅ where;
F = applied force (in newton)
r = radius (in metres)
∅ = angle that the force made with the bar.
Given F= 25N, r = 0.75m and ∅ = 30°
torque on the bar τ = 25*0.75*sin30°
τ = 25*0.75*0.5
τ = 9.375Nm
The torque on the bar is 9.375Nm
Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.
Answer:
(a) A = 0.650 m
(b) f = 1.3368 Hz
(c) E = 17.1416 J
(d) K = 11.8835 J
U = 5.2581 J
Explanation:
Given
m = 1.15 kg
x = 0.650 cos (8.40t)
(a) the amplitude,
A = 0.650 m
(b) the frequency,
if we know that
ω = 2πf = 8.40 ⇒ f = 8.40 / (2π)
⇒ f = 1.3368 Hz
(c) the total energy,
we use the formula
E = m*ω²*A² / 2
⇒ E = (1.15)(8.40)²(0.650)² / 2
⇒ E = 17.1416 J
(d) the kinetic energy and potential energy when x = 0.360 m.
We use the formulas
K = (1/2)*m*ω²*(A² - x²) (the kinetic energy)
and
U = (1/2)*m*ω²*x² (the potential energy)
then
K = (1/2)*(1.15)*(8.40)²*((0.650)² - (0.360)²)
⇒ K = 11.8835 J
U = (1/2)*(1.15)*(8.40)²*(0.360)²
⇒ U = 5.2581 J
Answer:
please read the answer below
Explanation:
The angular momentum is given by

By taking into account the angles between the vectors r and v in each case we obtain:
a)
v=(2,0)
r=(0,1)
angle = 90°

b)
r=(0,-1)
angle = 90°

c)
r=(1,0)
angle = 0°
r and v are parallel
L = 0kgm/s
d)
r=(-1,0)
angle = 180°
r and v are parallel
L = 0kgm/s
e)
r=(1,1)
angle = 45°

f)
r=(-1,1)
angle = 45°
the same as e):
L = 5kgm/s
g)
r=(-1,-1)
angle = 135°

h)
r=(1,-1)
angle = 135°
the same as g):
L = 5kgm/s
hope this helps!!
Answer:
Paleontologists have argued for a long time that the demise of the dinosaurs was caused by climatic alterations associated with slow changes in the positions of continents and seas resulting from plate tectonics. Off and on throughout the Cretaceous (the last period of the Mesozoic era, during which dinosaurs flourished), large shallow seas covered extensive areas of the continents. Data from diverse sources, including geochemical evidence preserved in seafloor sediments, indicate that the Late Cretaceous climate was milder than today's. The days were not too hot, nor the nights too cold. The summers were not too warm, nor the winters too frigid. The shallow seas on the continents probably buffered the temperature of the nearby air, keeping it relatively constant.