Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

<h2>The hiker will go up to 850 m on the hill</h2>
Explanation:
The total energy gained by the hiker = 140 x 4186 J
This energy is consumed in the potential energy acquired , while climbing up the hill.
The potential energy P.E = mass of hiker x acceleration due to gravity x height
Thus
140 x 4186 = 69 x 10 x h
or h =
= 850 m
If the 20% of the total energy is used
the height h₀ =
= 170 m
The answer is B(t) = constants x I(t)
Please take precaution on the point that it is an independent field of its radial position, if the point is measured well in the solenoid. (also the radial position is the axis of its symmetry)
Answer:
Final velocity of the block = 2.40 m/s east.
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum
Mass of bullet = 0.0140 kg
Consider east as positive.
Initial velocity of bullet = 205 m/s
Mass of Block = 1.8 kg
Initial velocity of block = 0 m/s
Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s
Final velocity of bullet = -103 m/s
We need to find final velocity of the block( u )
Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u
We have
2.87 = -1.442 + 1.8 u
u = 2.40 m/s
Final velocity of the block = 2.40 m/s east.
Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.