To solve the problem, we enumerate all the given first. Then the required and lastly the solution.
Given:
V1= 1.56x10^3 L = 1560 L P2 = 44.1 kPa
P1 = 98.9 kPa
Required: V2
Solution:
Assuming the gas is ideal. Ideal gas follows Boyle's Law which states that at a given temperature the product of pressure and volume of a gas is constant. In equation,
PV = k
Applying to the problem, we have
P1*V1 = P2*V2
(98.9 kPa)*(1560 L) = (44.1 kPa)*V2
V2 = 3498.5 L
<em>ANSWER: V2 = 3498.5 L</em>
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
a. <span>FM GmMmr2
</span>= 6.67 x 10-11N.m2kg27 .35 x 1022 kg 70 kg 3.78 x 108 m2
<span>= 2.40 x 10-3 N
b. </span><span>FE GmEmr2
= 6.67 x 10-11 N.m2kg 25 .97 x 1034 kg (70kg) 6.38 x 106 m2
=685 N
FMFE 2.40 x 10-3N685 N= 0.0004%</span>
<em>Answer</em>
Force = 170 N
<em>Explanation</em>
First find the distance (d) travelled by the bulldozer.
Sin 35 = 15/d
d = 15/(sin 35)
= 26.15m
Now;
work done = force × distance.
4500 J = force × 26.15
dividing both sides by 26.15,
Force = 4500/26.15
= 172.07 N
Answer to two significant figures = 170 N
If speed = distance/time , then time = speed/distance.
So...
Speed of light = 3*10^8(m/s)
Average distance from Earth to Sun = 149.6*10^9(m)
Therefore, t=(3*10^8(m/s))/(149.6*10^9(m))
I hope this was a helpful explanation, please reply if you have further questions about the problem.
Good luck!