answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
2 years ago
12

A glider of mass 0.240 kg is on a horizontal track, attached to a horizontal spring of force constant 6.00 N/m. There is frictio

n between the track and the glider. Initially the spring (whose other end is fixed) is stretched by 0.100 m and the attached glider is moving at 0.400 m/s in the direction that causes the spring to stretch farther. The glider comes momentarily to rest when the spring is stretched by 0.112 m. How much work does the force of friction do on the glider as the stretch of the spring increases from 0.100 m to 0.112 m?
Physics
1 answer:
Tanya [424]2 years ago
7 0

Answer:

W_{fr} = -0.01157\ J

Explanation:

given,

mass of glider = 0.24 kg

spring constant = 6 N/m

Initially the spring  is stretched by 0.100 m

moving at 0.400 m/s

glider comes to rest when stretched = 0.112

work done by the force of friction = ?

work done by non conservative force

W_{NCF} = E_f -E_i

W_{fr} = \dfrac{1}{2}kx^2-(\dfrac{1}{2}mv_o^2+\dfrac{1}{2}kx_1^2)

W_{fr} = \dfrac{1}{2}\times 6 \times 0.112^2-(\dfrac{1}{2}\times 0.24 \times 0.4^2+\dfrac{1}{2}\times 6 \times 0.1^2)

W_{fr} = -0.01157\ J

work done by the coefficient of friction W_{fr} = -0.01157\ J

You might be interested in
Pressure and volume changes at a constant temperature can be calculated using
Crank
It can be calculated using Boyle's Law.  A.
3 0
1 year ago
In the system shown above, the pulley is a uniform disk with a mass of .75 kg and a radius of 6.5 cm. The coefficient of frictio
lord [1]

Answer:

i am answering the same question 3rd time

please find the answer in the images attached.

5 0
1 year ago
Which statement about images is correct? a) A virtual image cannot be formed on a screen. b) A virtual image cannot be viewed by
ankoles [38]

Answer:

A). A virtual image cannot be formed on a screen.

Explanation:

A virtual image can not be formed on a screen.

For image:

1.A virtual image can be viewed by the unaided eye.

2. A real image must be erect or maybe inverted.

3.Mirrors can produce virtual as well as real image ,it depends on which type of mirror is.

4.A virtual image can be photographed.

So the option A is correct.

5 0
2 years ago
Calculate the volume of a liquid with a density of 5.45 g/ml and a mass of 65g
katrin [286]
Density=mass/volume
5.45g/ml=65g/V
V=65g/5.42g/ml
V=11.92ml
5 0
2 years ago
Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
Lesechka [4]

Answer:

Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Explanation:

Consider four possible cases.

<h3>Case A: 12.0 V.</h3>

-\begin{array}{c}-{\bf 2.0\;\mu\text{F}-}\\-1.5\;\mu\text{F}- \\-3.0\;\mu\text{F}-\end{array}-

In case all three capacitors are connected in parallel, the 2.0\;\mu\text{F} capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.

<h3>Case B: 5.54 V.</h3>

-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-

In case the 2.0\;\mu\text{F} capacitor is connected in parallel with the 1.5\;\mu\text{F} capacitor, and the two capacitors in parallel is connected to the 3.0\;\mu\text{F} capacitor in series.

The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.

The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_3}+ \dfrac{1}{C_1+C_2}} = \frac{1}{\dfrac{1}{3.0}+\dfrac{1}{2.0+1.5}} = 1.62\;\mu\text{F}.

What will be the voltage across the 2.0 μF capacitor?

The charge stored in two capacitors in series is the same as the charge in each capacitor.

Q = C(\text{Effective}) \cdot V = 1.62\;\mu\text{F}\times 12\;\text{V} = 19.4\;\mu\text{C}.

Voltage is the same across two capacitors in parallel.As a result,

\displaystyle V_1 = V_2 = \frac{Q}{C_1+C_2} = \frac{19.4\;\mu\text{C}}{3.5\;\mu\text{F}} = 5.54\;\text{V}.

<h3>Case C: 2.76 V.</h3>

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Similarly,

  • the effective capacitance of the two capacitors in parallel is 5.0 μF;
  • the effective capacitance of the three capacitors, combined: \displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_2}+ \dfrac{1}{C_1+C_3}} = \frac{1}{\dfrac{1}{1.5}+\dfrac{1}{2.0+3.0}} = 1.15\;\mu\text{F}.

Charge stored:

Q = C(\text{Effective}) \cdot V = 1.15\;\mu\text{F}\times 12\;\text{V} = 13.8\;\mu\text{C}.

Voltage:

\displaystyle V_1 = V_3 = \frac{Q}{C_1+C_3} = \frac{13.8\;\mu\text{C}}{5.0\;\mu\text{F}} = 2.76\;\text{V}.

<h3 /><h3>Case D: 4.00 V</h3>

-2.0\;\mu\text{F}-1.5\;\mu\text{F}-3.0\;\mu\text{F}-.

Connect all three capacitors in series.

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_1} + \dfrac{1}{C_2}+\dfrac{1}{C_3}} =\frac{1}{\dfrac{1}{2.0} + \dfrac{1}{1.5}+\dfrac{1}{3.0}} =0.667\;\mu\text{F}.

For each of the three capacitors:

Q = C(\text{Effective})\cdot V = 0.667\;\mu\text{F} \times 12\;\text{V} = 8.00\;\mu\text{C}.

For the 2.0\;\mu\text{F} capacitor:

\displaystyle V_1=\frac{Q}{C_1} = \frac{8.00\;\mu\text{C}}{2.0\;\mu\text{F}} = 4.0\;\text{V}.

6 0
1 year ago
Other questions:
  • a crate is being lifted into a truck. if it is moved with a 2470n force and 3650 j of work is done , then how far is the crate b
    12·1 answer
  • A 2.0kg solid disk rolls without slipping on a horizontal surface so that its center proceeds to the right with a speed of 5.0 m
    11·1 answer
  • Two rockets are flying in the same direction and are side by side at the instant their retrorockets fire. Rocket A has an initia
    8·1 answer
  • Lamar writes several equations trying to better understand potential energy. H = d with an arrow to the equation W = F d and P E
    11·2 answers
  • A11) A solenoid of length 18 cm consists of closely spaced coils of wire wrapped tightly around a wooden core. The magnetic fiel
    5·1 answer
  • A 1/10th scale model of an airplane is tested in a wind tunnel. The reynolds number of the model is the same as that of the full
    7·1 answer
  • A spaceship is headed toward Alpha Centauri at 0.999c. According to us, the distance to Alpha Centauri is about 4 light-years. H
    10·1 answer
  • A uniform meter stick balances on a fulcrum placed at the 40 cm mark when a weight W is placed at the 30 cm mark. What is the we
    13·2 answers
  • A rod bent into the arc of a circle subtends an angle 2θ at the center P of the circle (see below). If the rod is charged unifor
    9·1 answer
  • A roller coaster moving along its track rolls into a circular loop of radius r. In the loop, it is only affected by its initial
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!