Answer:
26 days
Explanation:
m = 9.4×1021 kg
r= 1.5×108 m
F = 1.1×10^ 19 N
We know Fc = 
==> 1.1 ×
= (9.4 ×
×
) ÷ 1.5 × 
==> 1.1 ×
=
× 6.26×
==>
= 1.1 ×
÷ 6.26×
==>
= 0.17571885 × 
==> v= 0.419188323 ×
m/sec
==> v= 419.188322834 m/s
Putting value of r and v from above in ;
T= 2πr ÷ v
==> T= 2×3.14×1.5×
÷ 0.419188323 × 
==> T = 22.472× 100000 = 2247200 sec
but
86400 sec = 1 day
==> 2247200 sec= 2247200 ÷ 86400 = 26 days
F=ma
m=total mass = 2300kg+2500kg=4800
F=18000N
a=?
a=F/m
a=18000/4800
a=3.8m/s^2
Final answer
Answer:b)1770 kWh
Explanation:
Given
volume of water 
Temperature rise 

also 1 kg mass is approximately is 1 gallon
therefore 40,000 gallon is equivalent to 3.8\times 40000 kg
heat Required to raise temperature is





Answer:
L' = 1.231L
Explanation:
The transmission coefficient, in a tunneling process in which an electron is involved, can be approximated to the following expression:

L: width of the barrier
C: constant that includes particle energy and barrier height
You have that the transmission coefficient for a specific value of L is T = 0.050. Furthermore, you have that for a new value of the width of the barrier, let's say, L', the value of the transmission coefficient is T'=0.025.
To find the new value of the L' you can write down both situation for T and T', as in the following:

Next, by properties of logarithms, you can apply Ln to both equations (1) and (2):

Next, you divide the equation (3) into (4), and finally, you solve for L':

hence, when the trnasmission coeeficient has changes to a values of 0.025, the new width of the barrier L' is 1.231 L