I think that the girl has greater tangential acceleration because she is closer to the center and the acceleration is greater there.
Using Ohm's Law, we can derived from this the value of resistance. If I=V/R, therefore, R = V/I
Substituting the values to the given,
P = Power = ?
R = Resistance = ?
V = Voltage = 2.5 V
I = Current = 750 mA
R = V/I = 2.5/ (750 x 10^-3)
R = 3.33 ohms
Calculating the power, we have P = IV
P = (750 x 10^-3)(2.5)
P = 1.875 W
The power consumption is the power consumed multiply by the number of hours. In here, we have;
1.875W x 4 hours = 7.5 watt-hours
Answer:
0.83 m or 5.57 m
Explanation:
Destructive interference will occur when the distances from the speakers differ by 1/2 wavelength.
The length of 1 cycle of 72.4 Hz is ...
λ = v/f = (343 m/s)/(72.4 Hz) ≈ 4.738 m
So, the distance of the listener from speaker B is ...
3.2 m ± (4.738 m)/2 = {0.83 m, 5.57 m} . . . either of these distances
_____
The location could be at additional multiples of 4.738 m, but we think not. The sound intensity drops off with the square of the distance from the speaker, so identical sound waves from the speakers will sound quite different at different distances from the speakers. For best interference, the distances need to be as close to the same as possible. That will be at 3.2 m and 5.57 m.
_____
<em>Comment on the speed of sound</em>
We don't know what speed you are to use for the speed of sound. We have used 343 m/s. Some sources use 340 m/s, which will give a result different by 2 or 3 cm.
Answer:
Explanation:
For this problem we use the translational equilibrium condition. Our reference frame for block 1 is one axis parallel to the plane and the other perpendicular to the plane.
X axis
-Aₓ - f_e +T = 0 (1)
Y axis
N₁ - W_y = 0 ( 2)
let's use trigonometry for the weight components
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
We write the diagram for the second body.
Note that in the block the positive direction rd upwards, therefore for block 2 the positive direction must be downwards
W₂ -T = 0 (3)
we add the equations is 1 and 3
- W₁ sin θ - μ N₁ + W₂ = 0
from equation 2
N₁ = W₁ cos θ
we substitute
-W₁ sin θ - μ (W₁ cos θ) + W₂ = 0
W₂ = m₁ g (without ea - very expensive)
This is the smallest value that supports the equilibrium system