Answer:
Incomplete question
Check attachment for the given diagram
Explanation:
Given that,
Initial Velocity of drum
u=3m/s
Distance travelled before coming to rest is 6m
Since it comes to rest, then, the final velocity is 0m/s
v=3m/s
Using equation of motion to calculate the linear acceleration or tangential acceleration
v²=u²+2as
0²=3²+2×a×6
0=9+12a
12a=-9
Then, a=-9/12
a=-0.75m/s²
The negative sign shows that the cylinder is decelerating.
Then, a=0.75m/s²
So, using the relationship between linear acceleration and angular acceleration.
a=αr
Where
a is linear acceleration
α is angular acceleration
And r is radius
α=a/r
From the diagram r=250mm=0.25m
Then,
α=0.75/0.25
α =3rad/sec²
The angular acceleration is =3rad/s²
b. Time take to come to rest
Using equation of motion
v=u+at
0=3-0.75t
0.75t=3
Then, t=3/0.75
t=4 secs
The time take to come to rest is 4s
Answer:
d). The value of y should be -32m
Vx=0.92 m/s
Explanation:
Using equation of motion uniform to y motion

So to find t that is the same time for all the motion

The value of Xf=-3.2m because the g is negative from the axis
Now in the axis 'x' to find Vx

Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have


Remain the same
Explanation:
If the force exerted by the intern is doubled and the distance is halved, the work done by the intern remains the same.
Work done is the force applied to move a body through a distance.
Work done = F x d
where F is the applied force
d is the distance moved
Now;
if:
f = 2f
d =
d
Input the parameter:
Work done = fxd = 2f x
d = fd
The work done will still remain the same
learn more:
Work done brainly.com/question/9100769
#learnwithBrainly
Answer:
Explanation:
18 kW = 18000 J /s
60% of 18kW = 10800 J/s
Latent heat of evaporation of water
= 2260 x 10³ J / kg
kg of water being evaporated per second
= 10800 / 2260 x 10³ kg /s
= 4.7787 x 10⁻³ kg / s
= 4.78 gm / s .