The angle of refraction would be further less
Centripetal acceleration = (speed)² / (radius) .
Force = (mass) · (acceleration)
Centripetal force = (mass) · (speed)² / (radius) .
= (11 kg) · (3.5 m/s)² / (0.6 m)
= (11 kg) · (12.25 m²/s²) / (0.6 m)
= (11 · 12.25) / 0.6 kg-m/s²
= 224.58 newtons. (about 50.5 pounds)
That's the tension in Miguel's arm or leg or whatever part of his body
Jesse is swinging him by. It's the centripetal force that's needed in
order to swing 11 kg in a circle with a radius of 0.6 meter, at 3.5
meters/second. If the force is less than that, then the mass has to
either swing slower or else move out to follow a bigger circle.
Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km
Answer:
It increased by a factor of 3.
Explanation:
The gravitational potential energy of an object is given by

where
m is the mass
g is the gravitational acceleration
h is the heigth of the object relative to some reference point (for instance, the ground)
As we see from the formula, the gravitational potential energy is directly proportional to the mass, m: therefore, if the mass of the cylinder is increased by a factor 3, then the gravitational potential energy will also increase by a factor 3.