answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
2 years ago
10

An experiment is designed to test what color of light will activate a photoelectric cell the best. The photocell is set in a cir

cuit that "clicks" in response to current. The faster the current, the more clicks per minute. In this experiment, the number of clicks in one minute is recorded for each color of light shining on the photocell. To change the color of light, a different color of cellophane is placed over the same flashlight and the flashlight is then located a specific distance from the photocell. Which of the following would be the best hypothesis for this experiment? Red light will activate the photocell to the highest degree. If photoelectric cells respond better to short wavelengths of light, the red light should activate it the least and blue the most. Photoelectric cells are affected by different wavelengths of light.
Physics
2 answers:
Sergeeva-Olga [200]2 years ago
8 0
I believe it would be the 2nd option.
"<span>If photoelectric cells respond better to short wavelengths of light,the red light should activate it the least and blue the most."
Stated above in the question.
</span><span>
</span>
Natalija [7]2 years ago
3 0

A photoelectric cell is an electronic device which is used to convert light energy into electric energy.The operation of this device is based on photoelectric effect.

Light of suitable frequency i.e greater or equal to threshold frequency will fall on the cathode maintained at negative potential.The electron emission will take place and these electrons are drifted towards the anode which is at positive potential.

Here,only those radiations will be capable of emitting electrons irrespective of surface barrier of metals whose energy is greater than the work function.

We know that the radiation having long wavelength has least energy as energy and wavelength are inversely proportional to each other.

Mathematically\ energy\ E=\frac{hc}{\lambda}

Here h is the Planck's constant,c is the velocity of light.

Here we have been given red light and blue light.

In the visible spectrum of radiation, the red light has longer wavelength than all other colors of light.Hence blue light has more energy as it's wavelength is less as compared to red light.

Hence, the blue light will activate the most and red the least.

You might be interested in
A pulley system used to lift car tires has a mechanical advantage of 11.2. If you pull on the pulley with a force of 150 N, how
Novay_Z [31]
1680 is the answer i got because i did this problem in apex
7 0
2 years ago
Read 2 more answers
Two parallel wires carry a current I in the same direction. Midway between these wires is a third wire, also parallel to the oth
Luda [366]

Answer:

Force is repulsive hence direction of force is away from wire

Explanation:

The first thing will be to draw a figure showing the condition,

Lets takeI attractive force as +ve and repulsive force as - ve and thereafter calculating net force on outer left wire due to other wires, net force comes out to be - ve which tells us that force is repulsive, hence direction of force is away from wire as shown in figure in the attachment.

4 0
2 years ago
Read 2 more answers
A very long line of charge with charge per unit length +8.00 μC/m is on the x-axis and its midpoint is at x = 0. A second very l
artcher [175]

Answer:

at y=6.29 cm the charge of the two distribution will be equal.

Explanation:

Given:

linear charge density on the x-axis, \lambda_1=8\times 10^{-6}\ C

linear charge density of the other charge distribution, \lambda_2=-6\times 10^{-6}\ C

Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.

Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.

<u>we know, the electric field due to linear charge is given as:</u>

E=\frac{\lambda}{2\pi.r.\epsilon_0}

where:

\lambda= linear charge density

r = radial distance from the center of wire

\epsilon_0= permittivity of free space

Therefore,

E_1=E_2

\frac{\lambda_1}{2\pi.x.\epsilon_0}=\frac{\lambda_2}{2\pi.(0.11-x).\epsilon_0}

\frac{\lambda_1}{x} =\frac{\lambda_2}{0.11-x}

\frac{8\times 10^{-6}}{x} =\frac{6\times 10^{-6}}{0.11-x}

x=0.0629\ m

∴at y=6.29 cm the charge of the two distribution will be equal.

9 0
2 years ago
If you touch the two terminals of a power supply with your two fingertips on opposite hands, the potential difference will produ
LiRa [457]

Answer:

Yes the body will receive a dangerous shock in both cases.

Explanation:

Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.

Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.

Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:

I = V/R= 120/ 500*10^3

I= 0.24 mA

Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.

Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:

I = 120 / 1000

I = 12 mA

The current is higher than safe zone so the body will receive a dangerous shock.

7 0
2 years ago
If there is a potential difference v between the metal and the detector, what is the minimum energy emin that an electron must h
beks73 [17]
The electrical potential energy of a charge q located at a point at potential V is given by
U=qV
Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be
\Delta U = q (V_2 -V_1)=q \Delta V

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to 
\Delta U = e V
Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
E_{min} = \Delta U = eV
5 0
2 years ago
Other questions:
  • A space shuttle was launched from the Earth to the moon. The average, or accepted, value of the distance of the Earth to the moo
    13·1 answer
  • An object is falling from a height of 7.5 meters. At what height will its velocity be 7 meters/second?
    5·1 answer
  • ) a 1.0 kilogram laboratory cart moving with a velocity of 0.50 meter per second due east collides with and sticks to a similar
    14·2 answers
  • A 3.0 cm object is 12.0 cm from a convex mirror that has a focal length of 20.0 cm.
    13·2 answers
  • Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
    15·1 answer
  • series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
    11·1 answer
  • Modifiable strength improvement factors include all of the following except...??
    12·1 answer
  • A pulley of radius 8.0 cm is connected to a motor that rotates at a rate 7000 rad s-1 and then decelerate uniformly at a rate of
    11·1 answer
  • A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it
    9·1 answer
  • Which of these is the largest? <br> a. star<br> b. nebula<br> c. galaxy<br> d. sun
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!