Answer:
torque is 1.7 *
Nm
Explanation:
Given data
turns n = 1000 turns
radius r = 12 cm
current I = 15A
magnitude B = 5.8 x 10^-5 T
angle θ = 25°
to find out
the torque on the loop
solution
we know that torque on the loop is
torque = N* I* A*B* sinθ
here area A = πr² = π(0.12)²
put all value
torque = N* I* A*B* sinθ
torque = 1000* 15* π(0.12)² *5.8 x 10-5 * sin25
torque = 0.0166 N m
torque is 1.7 *
Nm
Answer:
See explanation
Explanation:
First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.
<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>
Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water gives a concave curve.
If you read it and matches the height of water, you are getting two results:
One, get an accurate value or volume, because it's been done at eye level.
The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.
Answer:

Explanation:
As we know that the mass is revolving with constant angular speed in the circle of radius R
So we will have

now the position vector at a given time is

now the linear velocity is given as



-3 m/s
---------
per min
oh I think 8m/s to 3m/s to 0m/s
idk probably -0.08