U = 0, initial upward speed
a = 29.4 m/s², acceleration up to 3.98 s
a = -9.8 m/s², acceleration after 3.98s
Let h₁ = the height at time t, for t ≤ 3.98 s
Let h₂ = the height at time t > 3.98 s
Motion for t ≤ 3.98 s:
h₁ = (1/2)*(29.4 m/s²)*(3.98 s)² = 232.854 m
Calculate the upward velocity at t = 3.98 s
v₁ = (29.4 m/s²)*(3.98 s) = 117.012 m/s
Motion for t > 3.98 s
At maximum height, the upward velocity is zero.
Calculate the extra distance traveled before the velocity is zero.
(117.012 m/s)² + 2*(-9.8 m/s²)*(h₂ m) = 0
h₂ = 698.562 m
The total height is
h₁ + h₂ = 232.854 + 698.562 = 931.416 m
Answer: 931.4 m (nearest tenth)
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
(a) 
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

where
I is the intensity of the wave
c is the speed of light
In this problem,

and substituting
, we find the radiation pressure

(b) 
Since we know the cross-sectional area of the laser beam:

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

And then, since we know the mass of the atom

we can find the acceleration, by using Newton's second law:

Newton's First Law: A body will remain at rest or in motion in a straight line unless acted upon by a force.
Newton's Second Law: Change in motion is proportional to the applied force and parallel to it.
Newton's Third Law: To every action there is an equal and opposite reaction.
Things that would be hard to do in orbit are.
-turning a valve
-walking around
-trying to shower
-sitting still