Answer:
The answer is B) Magnetic field
Explanation:
I chose it and I got it right
Answer:
Q=1005 J
t= 0.67 sec
Explanation:
Lets take condition of room is 1 atm and 25°C.
Heat capacity ,c = 21 J /K.mol
If we assume that air is ideal gas that
P V = n R T



V= 107250 L
At STP number of moles given as

V=22.4 L at S.T.P.

n=4787.94 moles
n= 4.784 Kmoles
So heat required to raise 10°C temperature
Q = n x c x ΔT
Q = 4.78794 x 21 x 10
Q=1004.64 J
Time t
t= Q/P
P= 1.5 KW
t = 1.004.64 /1.5
t= 0.66 sec
The force exerted on the car during this stop is 6975N
<u>Explanation:</u>
Given-
Mass, m = 930kg
Speed, s = 56km/hr = 56 X 5/18 m/s = 15m/s
Time, t = 2s
Force, F = ?
F = m X a
F = m X s/t
F = 930 X 15/2
F = 6975N
Therefore, the force exerted on the car during this stop is 6975N
Answer:
x = v₀ cos θ t
, y = y₀ + v₀ sin θ t - ½ g t2
Explanation:
This is a projectile launch exercise, in this case we will write the equations for the x and y axes
Let's use trigonometry to find the components of the initial velocity
sin θ =
/ v₀
cos θ = v₀ₓ / v₀
v_{y} = v_{oy} sin θ
v₀ₓ = vo cos θ
now let's write the equations of motion
X axis
x = v₀ₓ t
x = v₀ cos θ t
vₓ = v₀ cos θ
Y axis
y = y₀ +
t - ½ g t2
y = y₀ + v₀ sin θ t - ½ g t2
v_{y} = v₀ - g t
v_{y} = v₀ sin θ - gt
= v_{oy}^2 sin² θ - 2 g y
As we can see the fundamental change is that between the horizontal launch and the inclined launch, the velocity has components
When air is blown into the open pipe,
L = 
where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation
⇒λ=
Note here that n=1 is for fundamental, n=2 is first harmonic and so on..
⇒ third harmonic will be n=4
Given L=6m, n=4, solving for λ we get:
λ=
=3m
Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:
c=f.λ Or f= 
⇒f=
≈115 Hz