Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Answer:
a) The sign of the charge is positive.
b) The magnetic force on the particle is 0.050 newtons.
Explanation:
The magnetic force F on a moving charge with velocity v passing through a magnetic field B is:
(1)
a)
Because it is a cross product, we can find the direction of the force using the right-hand rule, that is too the direction of the movement. We have two possibilities here because the velocity vector and magnetic field are perpendicular: the particle deflects towards east or toward west, which depends on the charge of the particle. Note that if you put your right hand fingers, except thumb, pointing towards north (direction of velocity) and later close them in the direction of the magnetic field, if you maintain your thumb perpendicular to this movement it will point towards east (See figure), so that will be de direction of the force if the charge is positive, but if the charge is negative, the direction will be opposite (towards west). So the charge has to be positive to deflects towards east.
b)
Now by 1:

The current is defined as the amount of charge transferred through a certain point in a certain time interval:

where
I is the current
Q is the charge

is the time interval
For the lightning bolt in our problem, Q=6.0 C and

, so the average current during the event is
Answer:
17 m/s south
Explanation:
= Mass of dog = 10 kg
= Mass of skateboard = 2 kg
v = Combined velocity = 2 m/s
= Velocity of dog = 1 m/s
= Velocity of skateboard
In this system the linear momentum is conserved

The velocity of the skateboard will be 17 m/s south as the north is taken as positive
Answer:
Number of electrons, 
Explanation:
Given that,
Charge on the fly, 
Let n is the number of electrons lose to the surface it is walking across. It is case of quantization of electric charge. It is given by :



n = 387500000 electrons
or

So, there are
electrons. Hence, this is the required solution.