Answer: 1 m/s
Explanation:
We have an object whose position
is given by a vector, where the components X and Y are identified by the unit vectors
and
(where each unit vector is defined to have a magnitude of exactly one):
![r=[2 m + (2 m/s) t] i + [3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=r%3D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
On the other hand, velocity is defined as the variation of the position in time:

This means we have to derive
:
![\frac{dr}{dt}=\frac{d}{dt}[2 m + (2 m/s) t] i + \frac{d}{dt}[3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=%5Cfrac%7Bdr%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5Cfrac%7Bd%7D%7Bdt%7D%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
This is the velocity vector
And when
the velocity vector is:

This is the velocity vector at 2 seconds
However, the solution is not complete yet, we have to find the module of this velocity vector, which is the speed
:


Finally:
This is the speed of the object at 2 seconds
The answer is B. I don’t think I need to explain this,
Mean is average, Mode is the most common number, and Median is the middle number when you put the numbers is numerical order from least to greatest
You want v2 = v1 + at
v is measured in m/s, a in m/s2, and t in s.
the dimensions multiply like algebraic quantities.
so because v2 is measured in m/s, then (v1 + at) has to come out in m/s
the units for (v1 + at) are (m/s) + (m/s2)(s)
time "s" cancels out one acceleration "s", so it comes ut to (m/s) + (m/s), which = (m/s).
if you had (v1t + a), then you would have (m/s)(s) + (m/s2) which = (m) + (m/s2), which doesn't work.
1850 to 1900 because the slope would be 105. It says what is the greatest fall, so the upward slope of 120 wouldn't count.