answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ella [17]
2 years ago
10

A heat recovery system​ (HRS) is used to conserve heat from the surroundings and supply it to the Mars Rover. The HRS fluid loop

s use Freon as the working fluid. The instrumentation must be kept as a temperature greater than negative 65 degrees Fahrenheit​ [°F] to avoid damage. The temperature in the area of Mars where the rover is exploring is 192 kelvins​ [K]. If the system must remove 46.9 British Thermal Units​ [BTU] of​ energy, what volume of Freon is needed in units of liters​ [L]?
Physics
1 answer:
Annette [7]2 years ago
7 0

Answer: Volume of Freon = 12.23.10^{3}L

Explanation: First, the temperatures have to be in the same unit, so all the tmeperatures is transformed into Kelvin:

T₁ = 192K

T₂ = \frac{5}{9}. (F - 32)+273.15

T₂ = \frac{5}{9}. (- 65 - 32)+273.15

T₂ = 219.26K.

Second, BTU is an unit of energy. It can be transformed into Joules by the relation 1BTU = 1055.06J.

Q = 1055.06 . 46.9 = 49482.314J

The letter Q represents Heat and is calculated as Q = m.Cp.ΔT, where:

m is mass of the element;

Cp is the heat capacity specific for each element;

ΔT is the difference between the final and initial temperature;

Third, it will be needed the properties of the Freon:

Freon (CF2Cl2) = 120.91g/mol; Cp = 74J/mol.K; ρ = 1.49kg/m³

Fourth, we calculate the mass of Freon necessary for the remove of 46.9BTU of energy from the system:

Q = m.Cp.ΔT

m=\frac{Q}{c(T-T_{0} )}

m = \frac{49482.314}{74(219.26-192)}

m = 18228.214g or m=18.228Kg

Fifth, using the density of Freon, Volume can be found

ρ = \frac{m}{V}

V = m / ρ

V = 18.228 / 1.49

V = 12.23m³

As SI for density is Kg/m³, the volume found is in m³.

Cubic meters is related to Liters as the following: 1m³=1000l.

So, volume of Freon = 12.23.10^{3}L

The volume of Freon needed is 12.23.10^{3}L.

You might be interested in
Suppose you are designing an amplifier and loudspeaker system to use at a rock concert. You want to make it as loud as possible.
OverLord2011 [107]

Answer is given below

Explanation:

  • Audio power amplifiers are found in all types of sound systems, including sound reinforcement, public address and home audio systems, as well as musical instrument amplifiers such as guitar amplifiers.
  • This is the last electronic step in the general audio playback series before sending the signal to the loudspeaker.  So when we want maximum volume or loud sound, we have to get it with maximum output and high input and low output impedance
4 0
2 years ago
The temperature of a heat engine is 500k some of the heat generated by the engine flows to the surroundings which are at a temp
Ierofanga [76]

1-125/500)x100=efficiency

1-1/4)x100 =75pc

3 0
1 year ago
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
1 year ago
if m represents mass in kg, v represents speed in m/s, and r represents radius in m, show that the force F in the equation F=mv^
Zarrin [17]
This approach is called the dimensional analysis which involves only the units of measurement without their magnitudes. You simply have to do the operations by using variables. Cancel out like items that may appear both in the numerator and denominator side. The solution is as follows:

F = mv²/r = [kg][m/s]²/[m] = [kg][m²⁻¹][1/s²] = [kg·m/s²]
4 0
2 years ago
Sunlight strikes a piece of crown glass at an angle of incidence of 38.0°. Calculate the difference in the angle of refraction b
zhuklara [117]

Answer:

Difference in the angle of refraction = 0.3°

41.04° is the minimum angle of incidence.

Explanation:

Angle of incidence  = 38.0°

For yellow light :

Using Snell's law as:

\frac {sin\theta_2}{sin\theta_1}=\frac {n_1}{n_2}

Where,  

Θ₁ is the angle of incidence

Θ₂ is the angle of refraction

n₁ is the refractive index for yellow light which is 1.523

n₂ is the refractive index of air which is 1

So,  

\frac {sin\theta_2}{sin{38.0}^0}=\frac {1.523}{1}

{sin\theta_2}=0.9377

Angle of refraction for yellow light = sin⁻¹ 0.9377 = 69.67°.

For green light :

Using Snell's law as:

\frac {sin\theta_2}{sin\theta_1}=\frac {n_1}{n_2}

Where,  

Θ₁ is the angle of incidence

Θ₂ is the angle of refraction

n₁ is the refractive index for green light which is 1.526

n₂ is the refractive index of air which is 1

So,  

\frac {sin\theta_2}{sin{38.0}^0}=\frac {1.526}{1}

{sin\theta_2}=0.9395

Angle of refraction for green light = sin⁻¹ 0.9395 = 69.97°.

The difference in the angle of refraction = 69.97° - 69.67° = 0.3°

Calculation of the critical angle for the yellow light for the total internal reflection to occur :

The formula for the critical angle is:

{sin\theta_{critical}}=\frac {n_r}{n_i}

Where,  

{\theta_{critical}} is the critical angle

n_r is the refractive index of the refractive medium.

n_i is the refractive index of the incident medium.

n₁ is the refractive index for yellow light which is 1.523 (incident medium)  

n₂ is the refractive index of air which is 1 (refractive medium)

Applying in the formula as:

{sin\theta_{critical}}=\frac {1}{1.523}

The critical angle is = sin⁻¹ 0.6566 = 41.04°

5 0
2 years ago
Other questions:
  • The sensory portion of the pns carries electrical signals ________ the cns; the motor portion carries electrical signals _______
    6·1 answer
  • An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
    9·1 answer
  • A particular planet has a moment of inertia of 9.74 × 1037 kg ⋅ m2 and a mass of 5.98 × 1024 kg. Based on these values, what is
    9·1 answer
  • In aviation, it is helpful for pilots to know the cloud ceiling, which is the distance between the ground and lowest cloud. The
    11·1 answer
  • A child is playing with a spring toy, first stretching and then compressing it.
    10·1 answer
  • It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
    9·1 answer
  • Technician a says that using a pressure transducer and lab scope is a similar process to using a vacuum gauge. technician b says
    13·1 answer
  • A bar magnet is dropped from above and falls through the loop of wire. The north pole of the bar magnet points downward towards
    8·1 answer
  • A toy of mass 0.190-kg is undergoing SHM on the end of a horizontal spring with force constant k = 350 N/m . When the toy is a d
    9·1 answer
  • Pulling out of a dive, the pilot of an airplane guides his plane into a vertical circle with a radius of 600 m. At the bottom of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!