Answer:

Explanation:
we know angular velocity in terms of moment of inertia and angular speed
ω .... (1)
moment of inertia of rod rotating about its center of length b
........ .(2)
using v = ωr
where w is angular velocity
and r is radius of rod which is equal to b
so we get 2v = ωb
ω = 2v/b ................. (3)
here velocity is two time because two opposite ends are moving opposite with a velocity v so net velocity will be 2v
put second and third equation in ist equation
×
so final answer will be 
Efficiency is defined as the measure of the amount of work or energy is conserved in a certain process. At all times, in every process, work or energy is always lost or wasted due to certain interference. Not all work given is converted to useful work or energy. Thus , efficiency is calculated by dividing the energy or work output to the energy or work input then the value is multiplied by 100 to express efficiency as percentage.
Efficiency = work output / work input
Efficiency = (1020 J / 1200 J) = 85%
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
1) The buoyant force acting on an object immersed in a fluid is:

where

is the density of the fluid,

is the volume of displaced fluid, and

is the gravitational acceleration.
2) We must calculate the volume of displaced fluid. Since the titanium object is completely immersed in the fluid (air), this volume corresponds to the volume of 1 Kg of titanium, whose density is

. Using the relationship between density, volume and mass, we find

3) Now we can recall the formula written at step 1) and calculate the buoyant force. The air density is

, so we have

4) The weight of 1 Kg of titanium is instead:

So, the buoyant force is negligible compared to the weight.
Answer:
Los fusibles están diseñados de tal forma que estos se "rompen" o se funden, cuando la demanda eléctrica supera un dado valor (cuando demasiada electricidad pasa a través de el).
Una vez el filamento se rompe, la corriente ya no puede circular por el (podes pensar en esta situación como un cable roto, la electricidad no puede circular por este cable)
Entonces, al romperse el filamento, en caso de una sobrecarga eléctrica, el flujo de electricidad se corta, y de esta forma se protege al computador de posibles sobrecargas.