Answer:
False
Explanation:
This is because according to newtons second law which says the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object. So take for example a net a net force in opposite direction will cause an object to slow down.
velocity vector here is not the same as acceleration vector
Because the air inside the tires is kept at high pressure.
In fact, the force applied by the tires upwards to counter-balance the weight of the car (pushing downwards) is

where p is the pressure of the air inside the tires and A is the area of contact between the tire and the car. Therefore, a higher pressure means a larger force F, and eventually if the pressure p is higher enough the force F will be large enough to counterbalance the weight of the car.
Answer:
The kinetic energy INCREASES as the roller coaster goes downhill.
Kinetic energy is greatest at POINT 2
Potential energy is greatest at POINT 1
Kinetic energy is decreasing while potential energy is increasing between points 3 AND 4
Which chart comes closest to the relationship between kinetic energy and potential energy at point 6 - CHART OF ANY POINT IN THE SAME HEIGHT AS OF 6
Explanation:
⇒As the potential energy increases , kinetic energy decreases.
⇒Potential energy here is gravitational potential energy.
⇒Thus, more we move away from the centre of the earth , more will be the gravitational potential energy or decrease in kinetic energy
Answer:
1.) Magnitude = 5596 N
2.) Direction = 60 degrees
Explanation: You are given that the breakdown vehicle A is exerting a force of 4000 N at angle 45 degree to the vertical and breakdown vehicle B is exerting a force of 2000 N
Let us resolve the two forces into X and Y component
Sum of the forces in the X - component will be 4000 × cos 45 = 2828.43 N
Sum of the forces in the Y - component will be 2000 + ( 4000 × sin 45 )
= 2000 + 2828.43
= 4828.43 N
The resultant force R will be
R = sqrt ( X^2 + Y^2 )
Substitutes the forces at X component and Y component into the formula
R = sqrt ( 2828.43^2 + 4828.43^2 )
R = sqrt ( 31313752.53 )
R = 5595.87 N
The direction will be
Tan Ø = Y/X
Substitute Y and X into the formula
Tan Ø = 4828.43 / 2828.43
Tan Ø = 1.707106
Ø = tan^-1( 1.707106 )
Ø = 59.64 degree
Therefore, approximately, the magnitude and direction of the resultant force on the truck are 5596 N and 60 degree respectively.
Answer: The same current flows through bth cables
Explanation:
Lets have a look to the next two equations
The Ohm´s V = I*R (1)
where:
V is voltage (potencial dfference) in volts
I is the electric current in ampers
R is the electric resistance
When a voltage is applied as the electrc load is not specified ( we have to assume is the same) the current will be the same
And in the other hand the resistance R =ρL/s
Where ρ is the resistivity of the conductor L the length and s square section of the conductor
If we assume that the smaller diameter cable is able to conduct the current then nothing happens. The point is that the capacity of conduction of current depend on the section of the cable (the area)
Tables exist where to find the capacity of each cable according to its diameter.