answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
2 years ago
15

If the volume of an object is reported as 5.0 ft3 what is the volume in cubic meters

Physics
1 answer:
12345 [234]2 years ago
3 0
The problem statement is simply asking us to convert units. We convert from units of ft^3 to units of m^3. To do this, we need a conversion factor. For this case, we use 1 m is equal to 3.28084 ft. We do as follows:

5.0 ft^3 ( 1 m / 3.28084 ft )^3 = 0.1416 m^3
You might be interested in
If there is a potential difference v between the metal and the detector, what is the minimum energy emin that an electron must h
beks73 [17]
The electrical potential energy of a charge q located at a point at potential V is given by
U=qV
Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be
\Delta U = q (V_2 -V_1)=q \Delta V

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to 
\Delta U = e V
Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
E_{min} = \Delta U = eV
5 0
2 years ago
A particle of mass M is moving in the positive x direction with speed v. It spontaneously decays into 2 photons, with the origin
anygoal [31]

Solution :

Mass of the particle = M

Speed of travel = v

Energy of one photon after the decay which moves in the positive x direction = 233 MeV

Energy of second photon after the decay which moves in the negative x direction = 21 MeV

Therefore, the total energy after the decay is = 233 + 21

                                                                           = 254 MeV

So by the law of conservation of energy, we have :

Total energy before the decay = total energy after decay

So, the total relativistic energy of the particle before its decay = 254 MeV  

7 0
2 years ago
A bicyclist of mass 68 kg rides in a circle at a speed of 3.9 m/s. If the radius of the circle is 6.5 m, what is the centripetal
ASHA 777 [7]
Data:
Centripetal Force = ? (Newton)
m (mass) = 68 Kg
s (speed) = 3.9 m/s
R (radius) = 6.5 m

Formula:
F_{centripetal\:force} =  \frac{m*s^2}{R}

Solving:
F_{centripetal\:force} = \frac{m*s^2}{R}
F_{centripetal\:force} = \frac{68*3.9^2}{6.5}
F_{centripetal\:force} = \frac{68*15.21}{6.5}
F_{centripetal\:force} = \frac{1034.28}{6.5}
\boxed{\boxed{F_{centripetal\:force} = 159.12\:N}}
Answer:
<span>B.159 N</span>
3 0
2 years ago
A 1500 kg car traveling at 20 m/s suddenly runs out of gas while approaching the valley shown in the figure. The alert driver im
geniusboy [140]

Answer:

v_f = 17.4 m / s

Explanation:

For this exercise we can use conservation of energy

starting point. On the hill when running out of gas

          Em₀ = K + U = ½ m v₀² + m g y₁

final point. Arriving at the gas station

         Em_f = K + U = ½ m v_f ² + m g y₂

energy is conserved

         Em₀ = Em_f

         ½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂

        v_f ² = v₀² + 2g (y₁ -y₂)

         

we calculate

        v_f ² = 20² + 2 9.8  (10 -15)

        v_f = √302

         v_f = 17.4 m / s

8 0
2 years ago
The different in size of each of the rope's pullers, correspond to a difference in the magnitude of the applied force, such that
olga55 [171]

Answer:

F = - 50 N

Hence, the magnitude of resultant force is 50 N and its direction is leftwards.

Explanation:

The magnitude of the resultant force is always equal to the sum of all forces. While, the direction of resultant force will be equal to the direction of the force with greater magnitude:

Resultant\ Force = F = F_{1} - F_{2}

considering right direction to be positive:

F₁ = Force applied on right rope = 150 N

F₂ = Force applied on left rope = 200 N

Therefore, the resultant force can be found by using these values in equation:

F = 150\ N - 200\ N

<u>F = - 50 N</u>

<u>Hence, the magnitude of resultant force is 50 N and its direction is leftwards.</u>

5 0
2 years ago
Other questions:
  • Which sequence correctly shows how stars form?
    8·2 answers
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • A 3.0-kilogram mass is traveling in a circle of 0.20-meter radius with a speed of 2.0 meters per second. what is the centripetal
    7·1 answer
  • You use energy to heat your home. what ultimately happens to the energy that you pay for in your heating bill?
    14·2 answers
  • For lunch you and your friends decide to stop at the nearest deli and have a sandwich made fresh for you with 0.300 kg of Italia
    7·1 answer
  • A calorimeter has a heat capacity of 1265 J/oC. A reaction causes the temperature of the calorimeter to change from 22.34oC to 2
    14·2 answers
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
  • What is the approximate pressure of a storage cylinder of recovered r-410a that does not contain any non-condensable impurities
    14·1 answer
  • An ant climbs to the very end of the second hand on a wall-mounted clock at exactly 9:15:00. The second hand is 13.5 cm long. Wh
    13·1 answer
  • In downtown Chicago, the east-west blocks are 400 ft long while the north-south blocks are 280 ft long. Because of the many one-
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!