answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
1 year ago
6

Calculate the buoyant force in air on a kilogram of titanium (whose density is about 4.5 grams per cubic centimeter). compare wi

th the weight mg of this much titanium.
Physics
1 answer:
aleksklad [387]1 year ago
7 0
1) The buoyant force acting on an object immersed in a fluid is:
B=d_f V_d g
where d_f is the density of the fluid, V_d is the volume of displaced fluid, and g=9.81~m/s^2 is the gravitational acceleration.

2) We must calculate the volume of displaced fluid. Since the titanium object is completely immersed in the fluid (air), this volume corresponds to the volume of 1 Kg of titanium, whose density is d=4.5~g/cm^3 = 4.5\cdot10^3~Kg/m^3. Using the relationship between density, volume and mass, we find
V_d= \frac{m}{d}= \frac{1~Kg}{4.5\cdot10^3Kg/m^3}=2.22\cdot10^{-4}~m^3

3) Now we can recall the formula written at step 1) and calculate the buoyant force. The air density is d_f = 1~Kg/m^3, so we have
B=d_f V_d g=1~Kg/m^3 \cdot 2.22\cdot10^{-4}~m^3 \cdot 9.81~m/s^2=2.22\cdot10^{-3}~N

4) The weight of 1 Kg of titanium is instead:
W=mg=1~Kg \cdot 9.81~m/s^2=9.81~N
So, the buoyant force is negligible compared to the weight.
You might be interested in
Snowboarder Jump—Energy and Momentum
soldier1979 [14.2K]

Answer:

THE ANSWER TERMS ARE DEFINED BLOW:-

Explanation:

MOMENTUM- IT IS THE ABILITY TO INCREASE OR DEVELOP CONSTANT FORCE.

KINETIC ENERGY:- IT IS THE ENERGY THAT A PRTICLE POSSES WHEN IT IS ACTUALLY IN MOTION.

POTENTIAL ENERGY:- IT IS THE ENERGY THAT A PARTICLE POSSES WHEN IT ACTUALLY IS IN RESTING STATE.

IN THIS ACIVITY THE SNOWBOARDER IS IN THE MOTION STATE THEREFORE HE POSSES KINETIC ENERGY AND TO MAINTAIN THAT KINEITC ENERG FOR A PERIOD OF TIME,MOMENTUM PLAYS IT'S ROLE.

4 0
2 years ago
Two resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are
ehidna [41]

Answer

The Value of  r  = 0.127

Explanation:

The mathematical representation of the two resistors connected in series is

                               R_T = R_1 +R_2

 And from Ohm law

                           I_s =\frac{ V}{R_T}

                            I_s  = \frac{V_0}{R_1 +R_2} ---(1)

The mathematical representation of the two resistors connected in parallel  is

                    R_T = \frac{1}{R_1} +\frac{1}{R_2}

                          = \frac{R_1 R_2}{R_1 +R_2}

From the question I_p =10I_s

          =>                 I_p =10I_s = \frac{V_0 }{\frac{R_1R_2}{R_1 +R_2} }  = \frac{V_0 (R_1 +R_2)}{R_1 R_2}---(2)

     Dividing equation 2 with equation 1

       =>                 \frac{10I_s}{I_s} =\frac{\frac{V_0 (R_1 +R_2)}{R_1 R_2}}{\frac{V_0}{R_1 +R_2}}

                                  10 = \frac{(R_1+R_2)^2}{R_1 R_2}----(3)

We are told that    r = \frac{R_1}{R_2} \ \ \ \ \  = > R_1 = rR_2

From equation 3  

                            10 = \frac{(1-r)^2}{r}

=> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  1+r^2 + 2r = 10r

=> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r^2 -8r+1 = 0

Using the quadratic formula

                             r =\frac{-b\pm \sqrt{(b^2 - 4ac)} }{2a}

        a = 1  b = -8 c =1  

                              =  \frac{8 \pm\sqrt{((-8)^2- (4*1*1))} }{2*1}

                               r= \frac{8+ \sqrt{60} }{2}  \ or \  r = \frac{8 - \sqrt{60} }{2}

                              r = \ 7.87\ or \  r \  = \ 0.127

Now  r =  0.127 because it is the least value among the obtained values

                               

                                   

                             

4 0
2 years ago
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
Alborosie

Answer:

I = 4.75 A

Explanation:

To find the current in the wire you use the following relation:

J=\frac{E}{\rho}      (1)

E: electric field E(t)=0.0004t2−0.0001t+0.0004

ρ: resistivity of the material = 2.75×10−8 ohm-meters

J: current density

The current density is also given by:

J=\frac{I}{A}        (2)

I: current

A: cross area of the wire = π(d/2)^2

d: diameter of the wire = 0.205 cm = 0.00205 m

You replace the equation (2) into the equation (1), and you solve for the current I:

\frac{I}{A}=\frac{E(t)}{\rho}\\\\I(t)=\frac{AE(t)}{\rho}

Next, you replace for all variables:

I(t)=\frac{\pi (d/2)^2E(t)}{\rho}\\\\I(t)=\frac{\pi(0.00205m/2)^2(0.0004t^2-0.0001t+0.0004)}{2.75*10^{-8}\Omega.m}\\\\I(t)=4.75A

hence, the current in the wire is 4.75A

4 0
2 years ago
A race car makes one lap around a track of radius 50 m in 9.0 s. What is the average velocity? *
Oksi-84 [34.3K]

Given that,

Radius of track, r = 50 m

time , t = 9 s

velocity, v = ?

Distance covered by car in one lap around a track is equal to the circumference of the track.

C = 2 π r = 2 * 3.14 * 50

C = 314.159 m

Distance covered by car, s = 314.159 m

Velocity = distance/ time

V = 314.159 / 9

V = 34.9 m/s

The average velocity of car is 34.9 m/s.

7 0
1 year ago
In the winter sport of bobsledding, athletes push their sled along a horizontal ice surface and then hop on the sled as it start
Hitman42 [59]

Answer:

v_f = 16.6 m/s

Explanation:

As we know by force equation that force along the inclined planed due to gravity is given as

F_g = mg sin\theta

so the acceleration due to gravity along the plane is given as

a = \frac{F_g}{m}

now we have

a = g sin\theta

a = (9.81 sin4.0)

a = 0.68 m/s^2

now we know that

v_f^2 - v_i^2 = 2 a d

v_f^2 - 9.2^2 = 2(0.68)(140)

v_f = 16.6 m/s

4 0
2 years ago
Other questions:
  • if one sprinter runs the 400.0 m in 58 seconds and another can run the same distance in 60.0 seconds, by how much distance will
    11·2 answers
  • You are driving due north on i-81 to come to jmu with a speed of 10 m/s, suddenly you realize you forgot your book. You make a u
    12·1 answer
  • You are standing at rest at a bus stop. A bus moving at a constant speed of 5.00 mm/???????? passes you. When the rear of the bu
    5·2 answers
  • A displacement vector is 34.0 m in length and is directed 60.0° east of north. What are the components of this vector? Northward
    15·1 answer
  • Resistance of rod is 1 ohm. It is bent in the form of square. The resistance across adjoint corners is.​
    10·1 answer
  • A very long conducting tube (hollow cylinder) has inner radius a and outer radius b. It carries charge per unit length +α, where
    15·1 answer
  • If period of the pendulum in preceding sample problem were 24s how tall would the tower be ?
    8·2 answers
  • Technician a says that using a pressure transducer and lab scope is a similar process to using a vacuum gauge. technician b says
    13·1 answer
  • For the first 10 seconds a squirrel runs 3 m/s to look for an acorn. The next 5 seconds he eats an acorn that he finds. Afterwar
    15·1 answer
  • PLEEEEEAAASSSEEE HELP ME
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!