Answer:
i(t) = (E/R)[1 - exp(-Rt/L)]
Explanation:
E−vR−vL=0
E− iR− Ldi/dt = 0
E− iR = Ldi/dt
Separating te variables,
dt/L = di/(E - iR)
Let x = E - iR, so dx = -Rdi and di = -dx/R substituting for x and di we have
dt/L = -dx/Rx
-Rdt/L = dx/x
interating both sides, we have
∫-Rdt/L = ∫dx/x
-Rt/L + C = ㏑x
x = exp(-Rt/L + C)
x = exp(-Rt/L)exp(C) A = exp(C) we have
x = Aexp(-Rt/L) Substituting x = E - iR we have
E - iR = Aexp(-Rt/L) when t = 0, i(0) = 0. So
E - i(0)R = Aexp(-R×0/L)
E - 0 = Aexp(0) = A × 1
E = A
So,
E - i(t)R = Eexp(-Rt/L)
i(t)R = E - Eexp(-Rt/L)
i(t)R = E(1 - exp(-Rt/L))
i(t) = (E/R)(1 - exp(-Rt/L))
At the rear.
PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
Centripetal force <span>a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving. It is calculated by the expression:
F = mv^2/r
where m is the mass, v is the velocity and r is the radius.
F = 7.26(31.95)^2 / (1.215) = 6100 N</span>