Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
Answer:0.2mm
Explanation:
The length of one VSD=8/10=0.8mm
The least count of the instrument is the difference between the length of one MSD and length of one VSD
The length of inebriated MSD=1mm
Therefore,
The least count=1-0.8=0.2mm
Answer:
t is appropriate to clarify that units such as time and angles the transformation is not in base ten, for example:
60 s = 1 min
60 min = 1 h
24 h = 1 day
Therefore, for this transformation, you must be more careful
the length transformation is base 10
Explanation:
In many exercises the units used are transformed by equations into other units called derivatives, in general the transformation of derived units is the product of the transformation of the constituent units.
In the example of velocity, the derivative unit is m / s, which is why it works in the same way that you transform length and time if in the equation it is multiplying it is multiplied and if it is dividing it is divided.
It is appropriate to clarify that units such as time and angles the transformation is not in base ten, for example:
60 s = 1 min
60 min = 1 h
24 h = 1 day
Therefore, for this transformation, you must be more careful
the length transformation is base 10
1000 m = 1 km
a) 6.25 rad/s
The law of conservation of angular momentum states that the angular momentum must be conserved.
The angular momentum is given by:

where
I is the moment of inertia
is the angular speed
Since the angular momentum must be conserved, we can write

where we have
is the initial moment of inertia
is the initial angular speed
is the final moment of inertia
is the final angular speed
Solving for
, we find

b) 28.1 J and 35.2 J
The rotational kinetic energy is given by

where
I is the moment of inertia
is the angular speed
Applying the formula, we have:
- Initial kinetic energy:

- Final kinetic energy:
