answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex_Xolod [135]
2 years ago
6

A steel rod with a length of l = 1.55 m and a cross section of A = 4.45 cm2 is held fixed at the end points of the rod. What is

the size of the force developing inside the steel rod when its temperature is raised by ∆T = 37.0 K? The coefficient of linear expansion for steel is α = 1.17×10-5 1/K, and the Young modulus of steel is E = 200.0 GPa.
Physics
1 answer:
Blababa [14]2 years ago
7 0

To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

F = AY\alpha \Delta T

Where

A = Cross-sectional Area

Y = Young's modulus

\alpha= Coefficient of linear expansion for steel

\Delta T= Temperature Raise

Our values are given as,

A = 4.45cm^2

T = 37K

\alpha = 1.17*10^{-5}K^{-1}

Y = 200*10^9Gpa

Replacing we have,

F = (4.45*10^{-4})(200*10^9)(1.17*10^{-5})(37)

F = 38526.1N

Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N

You might be interested in
A 1.00-kilogram ball is dropped from the top of a building. just before striking the ground, the ball's speed is 12.0 meters per
Anarel [89]
During the fall, the potential energy stored in the ball is converted into kinetic energy.
Thus,
PE = KE before hitting the ground
= 1/2 • mv^2
= 1/2 • 1 • 12^2
= 72J
6 0
2 years ago
Liz puts a 1 kg weight and a 10 kg on identical sleds. She then applies a 10N force to each sled. Which does not explain why the
Mariana [72]
Answer: C

Explanation:
The acceleration does not depend directly on the mass of the object.

Newton's Law is Force = Mass x Acceleration.
Therefore, Acceleration  = Force/Mass

The same force is applied in both cases.
Therefore acceleration is inversely proportional to mass.
As mass decreases, acceleration increases.

3 0
2 years ago
Read 2 more answers
4. In a closed system consisting of a cannon and a cannonball, the kinetic energy of a cannon is 72,000 J. If the cannonball is
FromTheMoon [43]

Answer:

D an B

Explanation:

3 0
2 years ago
Read 2 more answers
A small rock is launched straight upward from the surface of a planet with no atmosphere. The initial speed of the rock is twice
Scorpion4ik [409]

If gravitational effects from other objects are negligible, the speed of the rock at a very great distance from the planet will approach a value of \sqrt{3} v_{e}

<u>Explanation:</u>

To express velocity which is too far from the planet and escape velocity by using the energy conservation, we get

Rock’s initial velocity , v_{i}=2 v_{e}. Here the radius is R, so find the escape velocity as follows,

            \frac{1}{2} m v_{e}^{2}-\frac{G M m}{R}=0

            \frac{1}{2} m v_{e}^{2}=\frac{G M m}{R}

            v_{e}^{2}=\frac{2 G M}{R}

            v_{e}=\sqrt{\frac{2 G M}{R}}

Where, M = Planet’s mass and G = constant.

From given conditions,

Surface potential energy can be expressed as,  U_{i}=-\frac{G M m}{R}

R tend to infinity when far away from the planet, so v_{f}=0

Then, kinetic energy at initial would be,

                  k_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m\left(2 v_{e}\right)^{2}

Similarly, kinetic energy at final would be,

                k_{f}=\frac{1}{2} m v_{f}^{2}

Here, v_{f}=\text { final velocity }

Now, adding potential and kinetic energies of initial and final and equating as below, find the final velocity as

                 U_{i}+k_{i}=k_{f}+v_{f}

                 \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}+0

                  \frac{1}{2} m\left(2 v_{e}\right)^{2}-\frac{G M m}{R}=\frac{1}{2} m v_{f}^{2}

'm' and \frac{1}{2} as common on both sides, so gets cancelled, we get as

                   4\left(v_{e}\right)^{2}-\frac{2 G M}{R}=v_{f}^{2}

We know, v_{e}=\sqrt{\frac{2 G M}{R}}, it can be wriiten as \left(v_{e}\right)^{2}=\frac{2 G M}{R}, we get

                4\left(v_{e}\right)^{2}-\left(v_{e}\right)^{2}=v_{f}^{2}

                v_{f}^{2}=3\left(v_{e}\right)^{2}

Taking squares out, we get,

                v_{f}=\sqrt{3} v_{e}

4 0
2 years ago
What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?
nikklg [1K]
The Energy is Kinetic Energy.

Kinetic Energy = 1/2*mv²,  Where m is mass in kg, v is velocity in m/s

Energy is 33750 Juoles,  v = 30m/s

1/2*mv² = E

1/2*m*30² = 33750

m = (2*33750) / (30²)     Using a calculator

m = 75 kg

Mass of object is 75 kg.
5 0
2 years ago
Read 2 more answers
Other questions:
  • a stomp rocket takes 1.5 seconds to reach its maximum height what was the initial velocity and what was the maximum height ?
    14·2 answers
  • A 2 kg bar of metal weighs about 4.4 pounds. Approximately how much does it weigh in newtons?
    10·2 answers
  • Peter often gets sore muscles in the back of his lower legs from jogging what flexibility exercise could help him
    7·1 answer
  • Why does a clear stream always appear to be shallower than it actually is?
    14·2 answers
  • A person driving a car applies the brakes. This produces friction, which stops the car. Into which type of energy is the mechani
    8·2 answers
  • A 1.50 cm high diamond ring is placed 20.0 cm from a concave mirror with radius of curvature 30.00 cm. The magnification is ____
    14·1 answer
  • A plastic cube with a coin taped to its top surface is floating partially submerged in water. A student marks the level of the w
    8·1 answer
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
  • when the piston of a fountain pen with a nib is dipped into ink and and the air is released by pressing it, the ink fills in the
    15·1 answer
  • A statue and a coin are made out of exactly the same materials. Which property would you claim will likely be the same for both
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!