answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
1 year ago
9

Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec

tric field 4 cm from the plate is:
Physics
1 answer:
AysviL [449]1 year ago
7 0
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to
E= \frac{\sigma}{2\epsilon_0}
where
\sigma is the charge density
\epsilon_0 is the vacuum permittivity

We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
E=30 N/C
You might be interested in
A dog is 60m away while moving at constant velocity of 10m/s towards you. Where is the dog after 4 seconds?
evablogger [386]
20m away

the dog was 60m away from. you subtract 40m since it is 10m/s x 4 seconds
4 0
1 year ago
Read 2 more answers
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begin
Mashutka [201]

The given question is incomplete. The complete question is as follows.

A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is 14,000 + 10,000x − 26,000x^{2}, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.

Explanation:

We will calculate the work done as follows.

     W = \int_{0}^{0.54} F dx

         = \int_{0}^{0.54} (14,000 + 10,000x - 26,000x^{2}) dx

         = [14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}

         = 7560 + 1458 - 1364.69

         = 7653.31 J

or,      = 7.65 kJ       (as 1 kJ = 1000 J)

Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.

5 0
1 year ago
A particle with a charge of -1.24 x 10"° C is moving with instantaneous velocity (4.19 X 104 m/s)î + (-3.85 X 104 m/s)j. What is
astra-53 [7]

Answer:

(a) F= 6.68*10¹¹⁴ N (-k)

(b) F =( 6.68*10¹¹⁴ i  + 7.27*10¹¹⁴ j  ) N

Explanation

To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:

F=q* v X B Formula (1 )

q: charge (C)

v: velocity (m/s)

B: magnetic field (T)

vXB : cross product between the velocity vector and the magnetic field vector

Data

q= -1.24 * 10¹¹⁰ C

v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j

B  =(1.40 T)i  

B  =(1.40 T)k

Problem development

a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =

            = - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)

1T= 1 N/ C*m/s

We apply the formula (1)

  F= 1.24 * 10¹¹⁰ C*  5.39* 10⁴ m/s* N/ C*m/s (-k)

   F= 6.68*10¹¹⁴ N (-k)

a)  vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =

             =( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T

1T= 1 N/ C*m/s

We apply the formula (1)

F= 1.24 * 10¹¹⁰ C*  (  5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s

F =( 6.68*10¹¹⁴  i  + 7.27*10¹¹⁴  j  ) N

8 0
1 year ago
The filament in the bulb is moving back and forth, first pushed one way and then the other. What does this imply about the curre
Anestetic [448]

Answer:

energy carried by the current is given by the pointyng vector

Explanation:

The current is defined by

       i = dQ / dt

this is the number of charges per unit area over time.

The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.

But the energy carried by the current is given by the pointyng vector of the electromagnetic wave

            S = 1 / μ₀ EX B

It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement

5 0
2 years ago
A block with mass m1 = 4.50 kg and a ball with mass m2 = 7.70 kg are connected by a light string that passes over a frictionless
Allisa [31]
1.6a =  \frac{g(m_2 + m_3 - \mu km_1)}{m_1 + m_2 + m_3}  \\  \\ 1.6a(m_1 + m_2 + m_3) = g(m_2 + m_3 - \mu km_1) \\  \\ (1.6a + \mu kg)m_1 + (1.6a - g)m_2 = (g - 1.6a)m_3 \\  \\ m_3 =  \frac{1.6a +\mu kg}{g - 1.6a} m_1 - m_2 \\  \\ m_3 = 22.57 kg
4 0
1 year ago
Other questions:
  • A 5.8 × 104-watt elevator motor can lift a total weight of 2.1 × 104 newtons with a maximum constant speed of
    12·1 answer
  • A sky diver steps from a high-flying helicopter. if there were not air resistance, how fast would she be falling at the end of a
    12·1 answer
  • 0 the period of a pendulum is the time it takes the pendulum to swing back and forth once. if the only dimensional quantities th
    6·1 answer
  • Three point charges, q1 , q2 , and q3 , lie along the x-axis at x = 0, x = 3.0 cm, and x = 5.0 cm, respectively. calculate the m
    9·1 answer
  • In the absence of air resistance, at what other angle will a thrown ball go the same distance as one thrown at an angle of 75 de
    13·1 answer
  • a closed systems internal energy changes by 178 j as a result of being heated with 658 j of energy. the energy used to do work b
    14·1 answer
  • If the lattice constant of silicon is 5.43 Å, calculate?
    7·1 answer
  • A Chevrolet Corvette convertible can brake to a stop from a speed of 60.0 mi/h in a distance of 123 ft on a level roadway. What
    8·1 answer
  • A farsighted girl has a near point at 2.0 m but has forgotten her glasses at home. The girl borrows eyeglasses that have a power
    14·1 answer
  • the amplitude of an oscillator decreases to 36.8% of its initial value in 10.0 s. what is the value of the time constant
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!