20m away
the dog was 60m away from. you subtract 40m since it is 10m/s x 4 seconds
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
Answer:
(a) F= 6.68*10¹¹⁴ N (-k)
(b) F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
Explanation
To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:
F=q* v X B Formula (1 )
q: charge (C)
v: velocity (m/s)
B: magnetic field (T)
vXB : cross product between the velocity vector and the magnetic field vector
Data
q= -1.24 * 10¹¹⁰ C
v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j
B =(1.40 T)i
B =(1.40 T)k
Problem development
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =
= - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* 5.39* 10⁴ m/s* N/ C*m/s (-k)
F= 6.68*10¹¹⁴ N (-k)
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =
=( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* ( 5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s
F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
Answer:
energy carried by the current is given by the pointyng vector
Explanation:
The current is defined by
i = dQ / dt
this is the number of charges per unit area over time.
The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.
But the energy carried by the current is given by the pointyng vector of the electromagnetic wave
S = 1 / μ₀ EX B
It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement