Answer:
W
Explanation:
= Temperature of the room = 22.0 °C = 22 + 273 = 295 K
= Temperature of the skin = 33.0 °C = 33 + 273 = 306 K
= Surface area = 1.50 m²
= emissivity = 0.97
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴
Rate of heat transfer is given as


W
Answer:
v₀ₓ = 15 m / s,
= 5.2 m / s
v = 15.87 m / s
, θ = 19.1
Explanation:
This is a projectile launch problem. The horizontal speed that is constant throughout the entire path is worth 15 m / s, instead the vertical speed changes in value due to the acceleration of gravity, let's look for the initial vertical speed
Vy² =
² - 2 g y
² =
² + 2 g y
= √ (
² + 2 gy
Let's calculate
= √ (1.25² + 2 9.8 1.3)
= √ (27.04)
= 5.2 m / s
The initial speed can be calculated by the initial speed
v = √ v₀ₓ² +
²
v = RA (15² + 5.2²)
v = 15.87 m / s
We look for the angle with trigonometry
tan θ = voy / vox
θ = tan⁻¹ I'm going / vox
θ = tan⁻¹ 5.2 / 15
θ = 19.1
The answer is
v₀ₓ = 15 m / s
= 5.2 m / s
Answer:
a = 0.16
Explanation:
given,
mass of the object 1 = 0.2 kg
mass of the object 2 = 0.3 kg
acceleration when force is on 0.2 kg = 0.4 m/s²
acceleration when both mass are combine = ?
F = m a
F = 0.2 × 0.4
F = 0.08 N
force acting is same and total mass = 0.2 + 0.3 = 0.5 Kg
F = m a


a = 0.16 m/s²
the acceleration acting when both the body is attached is a = 0.16
Answer:
Torque τ =w ×0 = 0
Explanation:
We know that the torque is given by the product of the force and perpendicular distance between the force and the axis.
Here the gravity force act at the center and the rotational axis is also passing through the center.
Therefore the perpendicular distance between the force and the rotational axis would be zero.
Hence the torque will be
Torque = Force × Perpendicular distance
Torque = mg×0 = 0
Therefore the torque would be zero.
1850 to 1900 because the slope would be 105. It says what is the greatest fall, so the upward slope of 120 wouldn't count.