answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karo-lina-s [1.5K]
2 years ago
5

To navigate, a porpoise emits a sound wave that has a wavelength of 2.2 cm. The speed at which the wave travels in seawater is 1

522 m/s. Find the period of the wave.
Physics
1 answer:
Alenkasestr [34]2 years ago
3 0

To solve this problem we will apply the concept related to frequency, by which it is defined as the relationship between the speed of the wave and the wavelength. Since the frequency is the inverse of the period, this relationship will also be reversed. That is to say,

f = \frac{v}{\lambda}

Here,

v = Velocity

\lambda = Wavelength

Now the period is defined as,

T = \frac{1}{f}

Therefore

T = \frac{\lambda}{v}

Replacing we have that,

T = \frac{2.2*10^{-2}}{1522}

T = 1.445*10^{-5}s

Therefore the period of the wave is 1.445*10^{-5}s

You might be interested in
A ball weighing 1 lb is attached to a string 2 feet long and is whirled in a vertical circle at a constant speed of 10 ft/sec.
fredd [130]

Explanation:

It is given that,

Mass of the ball, m = 1 lb

Length of the string, l = r = 2 ft

Speed of motion, v = 10 ft/s

(a) The net tension in the string when the ball is at the top of the circle is given by :

F=\dfrac{mv^2}{r}-mg

F=m(\dfrac{v^2}{r}-g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}-1\ lb\times 32\ ft/s^2)

F = 18 N

(b) The net tension in the string when the ball is at the bottom of the circle is given by :

F=\dfrac{mv^2}{r}+mg

F=m(\dfrac{v^2}{r}+g)

F=1\ lb\times (\dfrac{(10\ ft/s)^2}{2}+1\ lb\times 32\ ft/s^2)

F = 82 N

(c) Let h is the height where the ball at certain time from the top. So,

T=mg(\dfrac{r-h}{r})+\dfrac{mv^2}{r}

T=\dfrac{m}{r}(g(r-h)+v^2)

Since, v^2=u^2-2gh

T=\dfrac{m}{r}(u^2-3gh+gr)

Hence, this is the required solution.

6 0
2 years ago
Ferdinand the frog is hopping from lily pad to lily pad in search of a good fly
loris [4]

Answer: 36.86\°

Explanation:

According to the described situation we have the following data:

Horizontal distance between lily pads: d=2.4 m

Ferdinand's initial velocity: V_{o}=5 m/s

Time it takes a jump: t=0.6 s

We need to find the angle \theta at which Ferdinand jumps.

In order to do this, we first have to find the <u>horizontal component (or x-component)</u> of this initial velocity. Since we are dealing with parabolic movement, where velocity has x-component and y-component, and in this case we will choose the x-component to find the angle:

V_{x}=\frac{d}{t} (1)

V_{x}=\frac{2.4 m}{0.6 s} (2)

V_{x}=4 m/s (3)

On the other hand, the x-component of the velocity is expressed as:

V_{x}=V_{o}cos\theta (4)

Substituting (3) in (4):

4 m/s=5 m/s cos\theta (5)

Clearing \theta:

\theta=cos^{-1} (\frac{4 m/s}{5 m/s})

\theta=36.86\° This is the angle at which Ferdinand the frog jumps between lily pads

4 0
2 years ago
What is the explanation for how a modern transmission electron microscope (TEM) can achieve a resolution of about 0.2 nanometers
IgorC [24]

Answer:

Explanation:

A simple light microscope uses light for imaging of objects where as a transmission electron microscope uses a monochromatic beam of electrons.

This beam is passed by a magnetic field which is very strong and thus act as a lens.

Its resolution of very high which is about 0.2 nanometers because of the separation between two atoms.

Because of this reason its resolution is about 1000 times greater than light microscope.

3 0
2 years ago
If the rocket has an initial mass of 6300 kg and ejects gas at a relative velocity of magnitude 2000 m/s , how much gas must it
Rzqust [24]

Answer:

The amount of gas that is to be released in the first second in other to attain an acceleration of  27.0 m/s2  is

      \frac{\Delta m}{\Delta t}   = 83.92 \ Kg/s

Explanation:

From the question we are told that

   The mass of the rocket is m = 6300 kg

   The velocity at gas is being ejected is  u =  2000 m/s

    The initial acceleration desired is a =  27.0 \  m/s

   The time taken for  the gas to be ejected is  t = 1 s

Generally this desired acceleration is mathematically represented as

        a = \frac{u *  \frac{\Delta m}{\Delta t} }{M -\frac{\Delta m}{\Delta t}* t}

Here \frac{\Delta m}{\Delta  t }  is the rate at which gas is being ejected with respect to time

Substituting values

      27 = \frac{2000 *  \frac{\Delta m}{\Delta t} }{6300 -\frac{\Delta m}{\Delta t}* 1}

=>   170100 -27* \frac{\Delta m}{\Delta t} = 2000 *  \frac{\Delta m}{\Delta t}

=>   170100  = 2027 *  \frac{\Delta m}{\Delta t}

=>   \frac{\Delta m}{\Delta t}   = \frac{170100}{2027}

=>   \frac{\Delta m}{\Delta t}   = 83.92 \ Kg/s

     

3 0
2 years ago
A square conducting loop 8.4 cm on a side is placed in a uniform B-field so that the plane of the loop is perpendicular to the d
arsen [322]

Answer:

Explanation:

area of square loop A = side²

= 8.4² x 10⁻⁴

A = 70.56 x 10⁻⁴ m²

when it is converted into rectangle , length = 14.7  , width = 2.1

area = length x width

= 14.7 x 2.1 x 10⁻⁴

= 30.87 x 10⁻⁴ m²

Let magnetic field be B

Change in flux = magnetic field x change in area

= B x ( 70.56 x 10⁻⁴ - 30.87 x 10⁻⁴ )

= 39.69 x 10⁻⁴ B

rate of change of flux = change in flux / time taken

= 39.69 x 10⁻⁴ B  / 6.5 x 10⁻³

= 6.1 x 10⁻¹ B

emf induced = 6.1 x 10⁻¹ B

6.1 x 10⁻¹ B  = 14.7 ( given )

B = 2.41 x 10

= 24.1 T

B ) magnetic flux is decreasing , so it needs to be increased as per Lenz's law . Hence current induced will be anticlockwise so that additional  magnetic flux is induced out of the page.

4 0
2 years ago
Other questions:
  • Which statement best explains the relationship between the wavelengths and the frequencies of all the waves in the electromagnet
    12·1 answer
  • Which two pieces of data indicate that Uranus resides in the outer region of the solar system
    12·1 answer
  • You are standing 10 meters from a light source. Then, you back away from the light source until you are 20 meters away from it.
    6·1 answer
  • A floating ice block is pushed through a displacement d = (14 m) i hat - (11 m) j along a straight embankment by rushing water,
    15·1 answer
  • In a cyclotron, the orbital radius of protons with energy 300 keV is 16.0 cm . You are redesigning the cyclotron to be used inst
    15·2 answers
  • Two blocks, 1 and 2, are connected by a rope R1 of negligible mass. A second rope R2, also of negligible mass, is tied to block
    9·1 answer
  • Thermodynamic Properties: Two identical, sealed, and well-insulated jars contain different gases at the same temperature. Each c
    12·1 answer
  • Combine Newton's 2nd law and Hooke's law for a spring to find the acceleration of the block a(t) as a function of time. Express
    15·1 answer
  • A water park is designing a new water slide that finishes with the rider flying horizontally off the bottom of the slide. The sl
    6·1 answer
  • A coin released at rest from the top of a tower hits the ground after falling 1.5 s. What is the speed of the coin as it hits th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!