answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
1 year ago
10

A balloon tied up with a wooden piece is moving upward with velocity of 15m/s. At a height of 300m above the ground, the wooden

block detached from the balloon. How much time will it take to reach the ground?
Physics
1 answer:
Inessa05 [86]1 year ago
6 0
Assume the wooden piece prevents the balloon from rising, is not so heavy as to cause the balloon to descend. and the 15 m/s is horizontal velocity “riding the wind,” That horizontal velocity does not affect the time the wood will take to reach the ground after release. Initial vertical velocity is zero.

s = u t + 1/2 g t^2

s is the height above ground, 300 m.

u is initial vertical velocity, zero.

t is time to reach the ground.

g is acceleration of gravity near Earth, 9.8 m/s^2.

300 m = 0 t + 1/2 (9.8 m/s^2) t^2

300 m = (4.9 m/s^2) t^2

61.22 s^2 = t^2

7.82 seconds = t
You might be interested in
A 1.0-m-long copper wire of diameter 0.10 cm carries a current of 50.0 A to the east. Suppose we apply to this wire a magnetic f
Setler79 [48]

Answer:

The classification of that same issue in question is characterized below.

Explanation:

The given values are:

Current, I = 50.0 A

Diameter, d = 0.10 cm

(a)...

As we know,

⇒  Magnetic force = Copper wire's weight

So,

⇒   B\times I\times L=M\times g

On putting the estimated values, we get

⇒  B\times 50\times 1=7.037\times 10^{-3}\times 9.81

⇒  50B=69.03297\times 10^{-3}

⇒  B=1.38\times 10^{-3} \ T

(b)...

As we know,

⇒  m=\delta\times L\times \frac{\pi \ d^2}{4}

⇒      =8960\times 1\times \frac{\pi \ (0.001)^2}{4}

⇒      =2240\times \pi \ 0.000001

⇒      =7.037\times 10^{-3} \ kg

7 0
1 year ago
A 145-g baseball is thrown so that it acquires a speed of 25 m/s. What was the net work done on the ball to make it reach this s
inysia [295]

When the ball has left your hand and is flying on its own, its kinetic energy is

KE = (1/2) (mass) (speed²)

KE = (1/2) (0.145 kg) (25 m/s)²

KE = (0.0725 kg) (625 m²/s²)

<em>KE = 45.3 Joules</em>

If the baseball doesn't have rocket engines on it, or a hamster inside running on a treadmill that turns a propeller on the outside, then there's only one other place where that kinetic energy could come from:  It MUST have come from the hand that threw the ball.  The hand would have needed to do  <em>45.3 J</em>  of work on the ball before releasing it.

6 0
2 years ago
In an experiment, students release a block from rest at the top of an inclined plane. The block slides down the plane through a
mote1985 [20]

Answer:

B) Friction

Explanation:

The main source of error is the omission of the effect from friction between block and incline, which is directly proportional to the mass of the block. The force of gravity is constant. The friction force dissipates part of the gravitational potential energy, generating a final speed less than calculated under the consideration of a conservative system. Air resistance is neglected at low speeds like this case.

8 0
1 year ago
A car drives 16 miles south and then 12 miles west. What is the magnitude of the car’s displacement? 4 miles 16 miles 20 miles 2
Ostrovityanka [42]
For this case, what we can do is use the Pythagorean theorem to find the magnitude of the displacement of the car.
 We have then
 d ^ 2 = 16 ^ 2 + 12 ^ 2&#10;
 From here, we clear the value of d.
 We have then:
 d =  \sqrt{16 ^ 2 + 12 ^ 2} &#10;
 Rewriting:
 d = \sqrt{256 + 144}
 d = \sqrt{400}
 d = 20 miles&#10;
 Answer:
 
The magnitude of the car's displacement is:
 
d = 20 miles
7 0
1 year ago
Read 2 more answers
The wheels of the locomotive push back on the tracks with a constant net force of 7.50 × 105 N, so the tracks push forward on th
Rasek [7]

Answer:

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

Explanation:

Statement is incomplete. Complete description is presented below:

<em>A freight train has a mass of </em>1.83\times 10^{7}\,kg<em>. The wheels of the locomotive push back on the tracks with a constant net force of </em>7.50\times 10^{5}\,N<em>, so the tracks push forward on the locomotive with a force of the same magnitude. Ignore aerodynamics and friction on the other wheels of the train. How long, in seconds, would it take to increase the speed of the train from rest to 80.0 kilometers per hour?</em>

If locomotive have a constant net force (F), measured in newtons, then acceleration (a), measured in meters per square second, must be constant and can be found by the following expression:

a = \frac{F}{m} (1)

Where m is the mass of the freight train, measured in kilograms.

If we know that F = 7.50\times 10^{5}\,N and m = 1.83\times 10^{7}\,kg, then the acceleration experimented by the train is:

a = \frac{7.50\times 10^{5}\,N}{1.83\times 10^{7}\,kg}

a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}

Now, the time taken to accelerate the freight train from rest (t), measured in seconds, is determined by the following formula:

t = \frac{v-v_{o}}{a} (2)

Where:

v - Final speed of the train, measured in meters per second.

v_{o} - Initial speed of the train, measured in meters per second.

If we know that a = 4.098\times 10^{-2}\,\frac{m}{s^{2}}, v_{o} = 0\,\frac{m}{s} and v = 22.222\,\frac{m}{s}, the time taken by the freight train is:

t = \frac{22.222\,\frac{m}{s}-0\,\frac{m}{s}  }{4.098\times 10^{-2}\,\frac{m}{s^{2}} }

t = 542.265\,s

The freight train would take 542.265 second to increase the speed of the train from rest to 80.0 kilometers per hour.

6 0
1 year ago
Other questions:
  • If you apply 100.0 N of force to lift an object with a single, fixed pulley, then what is the resistive force?
    8·1 answer
  • jack wants to find out which laundry detergent cleans the best ( Gain, Tide, or Purex). So, he takes a cotton sheet and cuts it
    11·2 answers
  • In grassland regions, rainy seasons and drought seasons determine, in part, the _____. kinds of resident organisms spread of fir
    7·2 answers
  • Compare the density, weight, mass, and volume of a pound of gold to a pound of iron on the surface of Earth.
    11·1 answer
  • A yo-yo can be thought of as a solid cylinder of mass m and radius r that has a light string wrapped around its circumference (s
    10·1 answer
  • In Michael Johnson's world-record 400 m sprint, he ran the first 100 m in 11.20 s; then he reached the 200 m mark after a total
    12·1 answer
  • A sample of gold has a volume of 2 cm3 and a mass of 38.6 grams. What would be the density, and three other properties of the sa
    12·1 answer
  • Two identical closely spaced circular disks form a parallel-plate capacitor. Transferring 2.1×109 electrons from one disk to the
    7·2 answers
  • A red cross helicopter takes off from headquarters and flies 120 km at 70 degrees south of west. There it drops off some relief
    9·1 answer
  • Part A
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!