answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erma4kov [3.2K]
2 years ago
11

jack wants to find out which laundry detergent cleans the best ( Gain, Tide, or Purex). So, he takes a cotton sheet and cuts it

up into equal squares. He stains four squares with chocolate, and four with grape juice. He washes one of each of the squares in each of the 3 detergents. One from each set of squares is washed in water alone. For each wash load, he used: the same amount of water, the same amount of detergent, and the same temperature of water. Find the independent variable, dependent variable, control (constants) and write a hypothesis for the outcome.
Physics
2 answers:
Aloiza [94]2 years ago
7 0

Answer:

A scientific experiment should contain three variables:  

1 Dependent variable: the variable which has to be studied in the experiment.

2 Independent variable: the variable which can be manipulated or gets changed in the experiment.

3. Control variable: the variable which is kept constant or the same throughout the experiment.

In the given question.

1. Independent variable is the type of laundry reagent.

2. Dependent variable- the clean cloth after washing.

3. Control variable- the amount of water, the temperature of the water and the amount of detergent.

dezoksy [38]2 years ago
6 0

the independent variables are the different laudry detergent

the dependent variable is color of the cloth after washing

the control variables are the amount of water added and by washing one cloth b just water

<span>hypothesis: the cloth washed with laundry detergent is cleaner than the cloth that is just washed by water. </span>

You might be interested in
A.Whale communication. Blue whales apparently communicate with each other using sound of frequency 17.0 Hz, which can be heard n
Y_Kistochka [10]

A. 90.1 m

The wavelength of a wave is given by:

\lambda=\frac{v}{f}

where

v is the speed of the wave

f is its frequency

For the sound emitted by the whale, v = 1531 m/s and f = 17.0 Hz, so the wavelength is

\lambda=\frac{1531 m/s}{17.0 Hz}=90.1 m

B. 102 kHz

We can re-arrange the same equation used previously to solve for the frequency, f:

f=\frac{v}{\lambda}

where for the dolphin:

v = 1531 m/s is the wave speed

\lambda=1.50 cm=0.015 m is the wavelength

Substituting into the equation,

f=\frac{1531 m/s}{0.015 m}=1.02 \cdot 10^5 Hz=102 kHz

C. 13.6 m

Again, the wavelength is given by:

\lambda=\frac{v}{f}

where

v = 340 m/s is the speed of sound in air

f = 25.0 Hz is the frequency of the whistle

Substituting into the equation,

\lambda=\frac{340 m/s}{25.0 Hz}=13.6 m

D. 4.4-8.7 m

Using again the same formula, and using again the speed of sound in air (v=340 m/s), we have:

- Wavelength corresponding to the minimum frequency (f=39.0 Hz):

\lambda=\frac{340 m/s}{39.0 Hz}=8.7 m

- Wavelength corresponding to the maximum frequency (f=78.0 Hz):

\lambda=\frac{340 m/s}{78.0 Hz}=4.4 m

So the range of wavelength is 4.4-8.7 m.

E. 6.2 MHz

In order to have a sharp image, the wavelength of the ultrasound must be 1/4 of the size of the tumor, so

\lambda=\frac{1}{4}(1.00 mm)=0.25 mm=2.5\cdot 10^{-4} m

And since the speed of the sound wave is

v = 1550 m/s

The frequency will be

f=\frac{v}{\lambda}=\frac{1550 m/s}{2.5\cdot 10^{-4} m}=6.2\cdot 10^6 Hz=6.2 MHz

3 0
2 years ago
A 0.300kg glider is moving to the right on a frictionless, ­horizontal air track with a speed of 0.800m/s when it makes a head-o
e-lub [12.9K]

Answer:

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

0.010935 J

0.0858675 J

Explanation:

m_1 = Mass of first glider = 0.3 kg

m_2 = Mass of second glider = 0.15 kg

u_1 = Initial Velocity of first glider = 0.8 m/s

u_2 = Initial Velocity of second glider = 0 m/s

v_1 = Final Velocity of first glider

v_2 = Final Velocity of second glider

As momentum and Energy is conserved

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}

From the two equations we get

v_{1}=\frac{m_1-m_2}{m_1+m_2}u_{1}+\frac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\frac{0.3-0.15}{0.3+0.15}\times 0.8+\frac{2\times 0.15}{0.3+0.15}\times 0\\\Rightarrow v_1=0.27\ m/s

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

v_{2}=\frac{2m_1}{m_1+m_2}u_{1}+\frac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\frac{2\times 0.3}{0.3+0.15}\times 0.8+\frac{0.3-0.15}{0.3+0.15}\times 0\\\Rightarrow v_2=1.067\ m/s

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

Kinetic energy is given by

K=\frac{1}{2}m_1v_1^2\\\Rightarrow K=\frac{1}{2}0.3\times 0.27^2\\\Rightarrow K=0.010935\ J

Final kinetic energy of first glider is 0.010935 J

K=\frac{1}{2}m_2v_2^2\\\Rightarrow K=\frac{1}{2}0.15\times 1.07^2\\\Rightarrow K=0.0858675\ J

Final kinetic energy of second glider is 0.0858675 J

6 0
2 years ago
An electric heater draws a steady current = 20.0 A on a 120-V line. (a) Calculate how much power does it require.
babymother [125]

Answer:

The heater power required is 2400 W. The power in the heater can be calculated as the product of the voltage line and the steady current:

P=V.I

P=120 V * 20 A = 2400 VA = 2400 W

Explanation:

8 0
2 years ago
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 Å. The atom is placed in a (a) simple cubic
Nuetrik [128]

Answer:

(a) A = 3.90 \AA

(b) A = 4.50 \AA

(c) A = 5.51 \AA

(d) A = 9.02 \AA

Solution:

As per the question:

Radius of atom, r = 1.95 \AA = 1.95\times 10^{- 10} m

Now,

(a) For a simple cubic lattice, lattice constant A:

A = 2r

A = 2\times 1.95 = 3.90 \AA

(b) For body centered cubic lattice:

A = \frac{4}{\sqrt{3}}r

A = \frac{4}{\sqrt{3}}\times 1.95 = 4.50 \AA

(c) For face centered cubic lattice:

A = 2{\sqrt{2}}r

A = 2{\sqrt{2}}\times 1.95 = 5.51 \AA

(d) For diamond lattice:

A = 2\times \frac{4}{\sqrt{3}}r

A = 2\times \frac{4}{\sqrt{3}}\times 1.95 = 9.02 \AA

6 0
1 year ago
A spring with a spring constant of 0.70 N/m is stretched 1.5 m. What was the force?
Talja [164]

Answer:

1.05 N

Explanation:

K = 0.7 N/m

e = 1.5 m

F = ?

from Hooke's law of elasticity

F = Ke

= 0.7×1.5

= 1.05 N

5 0
2 years ago
Other questions:
  • A Styrofoam slab has thickness h and density ρs. When a swimmer of mass m is resting on it, the slab floats in fresh water with
    5·1 answer
  • Potential energy matter has a result of its ____ or ____.
    5·2 answers
  • Which of the following combinations of variables results in the greatest period for a pendulum? length = L, mass = M, and maximu
    15·1 answer
  • A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
    13·1 answer
  • Two long straight wires enter a room through a window. One carries a current of 3.0 ???? into the room while the other carries a
    6·1 answer
  • A book is moved once around the edge of a tabletop with dimensions 1.75 m à 2.25 m. If the book ends up at its initial position,
    10·1 answer
  • A 600 kg car is at rest, and then accelerates to 5 m/s.
    10·1 answer
  • Technician A says that the use of some RTV sealants to seal components on an engine can damage the oxygen sensor. Technician B s
    6·1 answer
  • Particle q1 has a positive 6 µC charge. Particle q2 has a positive 2 µC charge. They are located 0.1 meters apart.
    14·2 answers
  • A student starts at the origin and ends up at a position 500 meters north of the origin. She knows she walked 250 meters straigh
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!