answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
2 years ago
13

Force F acts between two charges, q1 and q2, separated by a distance d. If q1 is increased to twice its original value and the d

istance between the charges is also doubled, what is the new force acting between the charges in terms of F? F F F 2F
Physics
2 answers:
Step2247 [10]2 years ago
9 0
Okay, haven't done physics in years, let's see if I remember this.

So Coulomb's Law states that F = k \frac{Q_1Q_2}{d^2} so if we double the charge on Q_1 and double the distance to (2d) we plug these into the equation to find

<span>F_{new} = k \frac{2Q_1Q_2}{(2d)^2}=k \frac{2Q_1Q_2}{4d^2} = \frac{2}{4} \cdot k \frac{Q_1Q_2}{d^2} = \frac{1}{2} \cdot F_{old}</span>

So we see the new force is exactly 1/2 of the old force so your answer should be \frac{1}{2}F if I can remember my physics correctly.

Lesechka [4]2 years ago
5 0

The Correct answer is 1/2F...

You might be interested in
A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
tiny-mole [99]

Answer:

F=mg(sin(\theta )-0.25 cos(\theta ))

Explanation:

The free body diagram of the block on the slide is shown in the below figure

Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces

N is the reaction force between the block and the slide

For equilibrium along x-axis we have

\sum F_{x}=0\\\\mgsin(\theta )-\mu N-F=0\\\therefore F=mgsin(\theta)-\mu N......(\alpha )\\Similarly\\\sum F_{y}=0\\\\N-mgcos(\theta )=0\\\therefore N=mgcos(\theta ).......(\beta )\\\\

Using value of N from equation β in α we get value of force as

F=mg(sin(\theta )-\mu cos(\theta ))

Applying values we get

F=mg(sin(\theta )-0.25 cos(\theta ))

8 0
1 year ago
Read 2 more answers
A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 590 N/m. The block is pulled
SVETLANKA909090 [29]

Answer:

The  value is  v =  -0.04 \  m/s

Explanation:

From the question we are told that

   The  mass  of the block is  m  =  2.0 \ kg

   The  force constant  of the spring is  k  =  590 \ N/m

   The amplitude  is  A =  + 0.080

   The  time consider is  t =  0.10 \  s

Generally the angular velocity of this  block is mathematically represented as

      w =  \sqrt{\frac{k}{m} }

=>   w =  \sqrt{\frac{590}{2} }

=>   w = 17.18 \  rad/s

Given that the block undergoes simple harmonic motion the velocity is mathematically represented as  

         v  =  -A w sin (w* t )

=>       v  = -0.080 * 17.18 sin (17.18* 0.10 )

=>       v =  -0.04 \  m/s

7 0
2 years ago
The burj Khalifa in Dubai is the worlds tallest building. It rises to an amazing 828M above the ground and if you were to get to
antoniya [11.8K]
I don't understand what you mean by "depth" of the steps.  The flat part of the step has a front-to-back dimension, and the 'riser' has a height.  I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy.  And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground.  So something is definitely fishy about the steps.

Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.

In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters.  The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
6 0
2 years ago
Where is the steering nozzle located on a pwc?
Dvinal [7]
At the rear.

PWC stands for personal watercraft, and it is a small powerboat. The main components of a PWC are the hull (body of the boat), deck (surface where people walk/stand), throttle (controls speed), steering nozzle and water intake.
3 0
2 years ago
Read 2 more answers
Lorenzo is making a prediction. “I learned that nonmetals increase in reactivity when moving from left to right. So I predict th
nadezda [96]
That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.

The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.
6 0
2 years ago
Read 2 more answers
Other questions:
  • A small 175-g ball on the end of a light string is revolving uniformly on a frictionless surface in a horizontal circle of diame
    11·2 answers
  • A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is
    9·2 answers
  • A ball hangs on the end of a string that is connected to the ceiling so that it swings like a pendulum. You pull the ball up so
    5·1 answer
  • A charge of 5.67 x 10-18 C is placed 3.5 x 10 m away from another charge of - 3.79 x 10 "C
    6·1 answer
  • Suppose that, instead of the Coulomb force law, one finds experimentally that the force between any two charge q1 and q2 is Writ
    11·1 answer
  • a 0.0215m diameter coin rolls up a 20 degree inclined plane. the coin starts with an initial angular speed of 55.2rad/s and roll
    6·1 answer
  • Un camión cargado, de masa 3000 kg, ha adquirido en la bajada de un puerto una velocidad excesiva de 108 km/h. Al ver una curva
    11·1 answer
  • A bird is flying in a room with a velocity field of . Calculate the temperature change that the bird feels after 9 seconds of fl
    10·1 answer
  • A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
    15·1 answer
  • Question
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!