Answer:
15.7 m/s
Explanation:
The motion of the cannonball is a accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground (gravitational acceleration). Therefore, the velocity of the ball at time t is given by:

where
u = 0 is the initial velocity
g = 9.8 m/s^2 is the acceleration
t is the time
If we substitute t=1.6 s into the equation, we find the final velocity of the cannonball:

The question with the complete options:
Look at these two sentences about Undeposited Funds. 1. By posting to Undeposited Funds, you can create a single bank deposit for multiple payments, making it easy ___________. 2. When receiving a payment, make sure _________________. Which of the options below correctly fills in the blanks? A.)1. To match your bank register with your bank statement; 2. the Deposit to account is Undeposited Funds
B) 1. To match your bank register with your bank statement; 2. the Deposit to account is Checking
C)1. To match your expenses with your bank statement; 2. the Deposit to account is Uncategorized asset
D)1. To match your bank register with your bank statement; 2. the Deposit to account is Uncategorized funds.
Answer: The correct option is A (1. To match your bank register with your bank statement; 2. the Deposit to account is Undeposited Funds)
Explanation: Undeposited funds is a type of account created to keep funds that are not yet deposited in the individuals account. It's a default account which is used by online marketers to keep funds until they are ready to be paid.
By posting to Undeposited Funds, you can create a single bank deposit for multiple payments, making it easy to match your bank register with your bank statement. When receiving a payment, make sure the Deposit to account is Undeposited Funds.
.
Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV
Answer:
Explanation:
Given that, the distance between the electrode is d.
The electron kinetic energy is Ek when the electrode are at distance "d" apart.
So, we want to find the K.E when that are at d/3 distance apart.
K.E = ½mv²
Note: the mass doesn't change, it is only the velocity that change.
Also,
K.E = Work done by the electron
K.E = F × d
K.E = W = ma × d
Let assume that if is constant acceleration
Then, m and a is constant,
Then,
K.E is directly proportional to d
So, as d increase K.E increase and as d decreases K.E decreases.
So,
K.E_1 / d_1 = K.E_2 / d_2
K.E_1 = E_k
d_1 = d
d_2 = d/3
K.E_2 = K.E_1 / d_1 × d_2
K.E_2 = E_k × ⅓d / d
Then,
K.E_2 = ⅓E_k
So, the new kinetic energy is one third of the E_k
C I believe is the correct answer. Developing possible solutions would be easier than spending hours researching or identifying the need.