Answer:Resistivity of the wire is 7.065 × 10^-8 Ω m.
Explanation:
I have no idea i just googled it
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct option is option 3
Explanation:
From the question we are told that
The diameter of solenoid 1 is 
The length of solenoid 1 is 
The number of turns of solenoid is 
The diameter of solenoid 2 is 
The length of solenoid 2 is 
The number of turns of solenoid 2 is 
Generally the magnetic in a solenoid is mathematically represented as

From this equation we see that


Here C stands for constant
=> 
=> 
=> 
=> 
=> 
=> 
<span>Let m1=10kg and m2=5kg and for our calculations assume right is positive and up is positive (note: for block hanging, the x axis is vertical so tilt your head to help)
For m1
Sigma Fx = ma
T - m1gsin35 = m1a where T = tension
For m2
m2g - T = m2a
Add equation together
m1a + m2a = T-m1gsin35 + m2g - T
a(m1 + m2) = m2g - m1gsin35
a= (5*9.8 - 10*9.8*sin35)/(10 + 5)
a= -0.48m/s/s
So the system is moving in the opposite direction of our set coordinate system where we said right positive, its negative so its moving left therefore down the ramp</span>
Ok, I think this is right but I am not sure:
Q = ϵ
0AE
A= π π
r^2
=(8.85x10^-12 C^2/Nm^2)
( π π (0.02m)^2)
(3x10^6 N/C) =3.3x10^-8 C = 33nC N = Q/e = (3.3x10^-8 C)/(1.60x10^-19 C/electron) = 2.1x10^11 electrons
Answer:
To increase kinetic friction, the amount of fine water droplets sprayed before the game is limited.
To reduce kinetic friction. increase the amount of fine water droplets during pregame preparation and sweeping in front of the curling stones.
Explanation:
In curling sports, since the ice sheets are flat, the friction on the stone would be too high and the large smooth stone would not travel half as far. Thus controlling the amount of fine water droplets sprayed before the game is limited pregame is necessary to increase friction.
On the other hand, reducing ice kinetic friction involves two ways. The first way is adding bumps to the ice which is known as pebbling. Fine water droplets are sprayed onto the flat ice surface. These droplets freeze into small "pebbles", which the curling stones "ride" on as they slide down the ice. This increases contact pressure which lowers the friction of the stone with the ice. As a result, the stones travel farther, and curl less.
The second way to reduce the kinetic friction is sweeping in front of the large smooth stone. The sweeping action quickly heats and melts the pebbles on the ice leaving a film of water. This film reduces the friction between the stone and ice.