answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
e-lub [12.9K]
1 year ago
8

Consider a ball rolling around in a circular path on the inner surface of a cone. the weight of the ball is shown by the vector

W . There us no friction, so only one other force acts on the ball a normal force.
1.The normal force is greater than the weight and greater than the centripetal force
2.The normal force is greater than the weight and less that the centripetal force
3.The normal force is less than the weight and the greater than the centripetal force
4. The normal force less than the weight and less than the centripetal force. ​
Physics
1 answer:
zimovet [89]1 year ago
5 0

Answer:

option 2 is righttttt.................

You might be interested in
Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 36.5 cm while travelin
tia_tia [17]

Answer:

f=8.219*10^{8}Hz

Explanation:

We are going to use the formula  v=fλ

Where v= velocity of radio waves

f= frequency

λ= wavelength of wave

  • radio waves are electromagnetic waves and as such they have the speed of light which is 3*10^{8}m/s.
  • also when a wave travels from one medium to another, the wavelength changes while the frequency remains the same.
  • calculating for the frequency of the wave in air also gives us the frequency in the window glass.

f=\frac{v}{λ}

v=3*10^{8}m/s.

λ=36.5 cm = 36.5/100= 0.365m

f=\frac{3*10^{8}m/s.}{0.365m}

f=8.219*10^{8}Hz

7 0
2 years ago
Which one of the following represents an acceptable set of quantum numbers for an electron in an atom? (arranged as n, l, m l ,
Vitek1552 [10]

Answer:

The correct option that represents an acceptable set of quantum numbers for an electron in an atom is;

(b) 4, 3, -3, 1/2.

Explanation:

To solve the question, we note that the available options where the set of quantum numbers for an electron in an atom are arranged as n, l, m l , and ms are;

4, 4, 4, 1/2

4, 3, -3, 1/2

4, 3, 0, 0

4, 5, 7, -1/2

4, 4, -5, 1/2

Let us label them as a to as follows

(a) 4, 4, 4, 1/2

(b) 4, 3, -3, 1/2

(c) 4, 3, 0, 0

(d) 4, 5, 7, -1/2

(e) 4, 4, -5, 1/2

Next we note the rules for the assignment and arrangement of quantum numbers are as follows

Number                                   Symbol                Possible values

Principal Quantum Number  .......n........................1, 2, 3, ......n

Angular momentum quantum

number...............................................l.........................0, 1, 2, .......(n - 1)

Magnetic Quantum Number........m₁......................-l, ..., -1, 0, 1,.....,l  

Spin Quantum Number.................m_s.....................+1/2, -1/2

We are meant to analyze each of the arrangement for acceptability.

Therefore for (a),

we note that the angular momentum quantum number, l =4 , is equal to the principal quantum number n =4 which violates the rule as the maximum value of the angular momentum quantum number is (n-1) where the maximum value of the principal quantum number is n.

Therefore (a) is not acceptable.

(b) Here we note that

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = -3 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (b) 4, 3, -3, 1/2 represents an acceptable set of quantum numbers for an electron in an atom.

(c) Here we have

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 3 ∈ (0, 1, 2, .......(n - 1)) → acceptable

The magnetic quantum number m₁ = 0 ∈ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 0 ∉ (+1/2, -1/2) → not acceptable

Therefore (c) 4, 3, 0, 0 does not represents an acceptable set of quantum numbers for an electron in an atom.

(d) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 5 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = 7 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = -1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (d) 4, 5, 7, -1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

(e) Here we have;

The principal quantum number n = 4 ∈ (1, 2, 3, ......n) → acceptable

The angular momentum quantum number l = 4 ∉ (0, 1, 2, .......(n - 1)) → not acceptable

The magnetic quantum number m₁ = -5 ∉ (-l, ..., -1, 0, 1,.....,l)  → acceptable

The spin quantum number m_s = 1/2 ∈ (+1/2, -1/2) → acceptable

Therefore (e) 4, 4, -5, 1/2 does not represents an acceptable set of quantum numbers for an electron in an atom.

3 0
1 year ago
A uniformly accelerated car passes three equally spaced traffic signs. The signs are separated by a distance d = 25 m. The car p
DedPeter [7]

Answer:

a) v_{1}=\frac{x_{2}-x_{1}  }{t_{2}-t_{1}  }=\frac{(2(\frac{25}{3})-\frac{25}{3} )m}{3.9s-1.3s}  =3.2051 \frac{m}{s}

b) v_{2}=\frac{x_{3}-x_{2}  }{t_{3}-t_{2}  }=\frac{(25-2(\frac{25}{3}) )m}{5.5s-3.9s}  =5.2083 \frac{m}{s}

c) a=\frac{v_{2}-v_{1}  }{t_{2}-t_{1}  } =\frac{5.2083m/s-3.2051m/s}{5.5s-3.9s} =1.252 \frac{m}{s^{2} }

Explanation:

<em><u>The knowable variables are </u></em>

d_{t}=25m

t_{1}=1.3 s

t_{2}=3.9 s

t_{3}=5.5 s

Since the three traffic signs are <u>equally spaced</u>, the <u>distance between each sign is \frac{25}{3} m</u>

a) v_{1}=\frac{x_{2}-x_{1}  }{t_{2}-t_{1}  }=\frac{(2(\frac{25}{3})-\frac{25}{3} )m}{3.9s-1.3s}  =3.2051 \frac{m}{s}

b) v_{2}=\frac{x_{3}-x_{2}  }{t_{3}-t_{2}  }=\frac{(25-2(\frac{25}{3}) )m}{5.5s-3.9s}  =5.2083 \frac{m}{s}

Since we know the velocity in two points and the time the car takes to pass the traffic signs

c) a=\frac{v_{2}-v_{1}  }{t_{2}-t_{1}  } =\frac{5.2083m/s-3.2051m/s}{5.5s-3.9s} =1.252 \frac{m}{s^{2} }

6 0
1 year ago
The heat capacity of an object depends in part on its ____.
nikdorinn [45]
If I remember it correctly, heat capacity is inversely proportional to mass so the answer is:
The heat capacity of an object depends in part on its a. mass
7 0
1 year ago
The inventor of the photographic process in which a photograph produced without a negative by exposing objects to light on light
Nikolay [14]
<span>A. Man Ray --------------------</span>
7 0
1 year ago
Read 2 more answers
Other questions:
  • A particle's trajectory is described by x =(12t3−2t2)m and y =(12t2−2t)m, where t is in s.
    9·2 answers
  • Find τf, the torque about point p due to the force applied by the achilles' tendon.
    11·1 answer
  • By reacting, an element that does not have a complete set of valence electrons can acquire an electron configuration similar to
    12·2 answers
  • Which of these shows unbalanced forces at work on an object? A. an ice skater turning as he skates around an ice rink B. a bicyc
    6·2 answers
  • What species has the electron configuration [ar]3d2?
    11·2 answers
  • In a supermarket, you place a 22.3-N (around 5 lb) bag of oranges on a scale, and the scale starts to oscillate at 2.7 Hz. What
    14·1 answer
  • The small ball of mass m and its supporting wire become a simple pendulum when the horizontal cord is severed. Determine the rat
    11·1 answer
  • Wind blows at the speed of 30m/s across a 175m^2 flat roof if a house.
    14·1 answer
  • Sara and Saba are identical twins who are the same in every way, including their weights. One day, Sara and Saba decided to go f
    12·1 answer
  • A hot–air balloon is moving at a speed of 10.0 meters/second in the +x–direction. The balloonist throws a brass ball in the +x–d
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!