Answer:

Explanation:
Induced EMF in the coil is given by the equation

so we have

also we know that rate of change in current in solenoid is given as

so induced EMF of coil is given as


now induced current in the coil will be given as



The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
Answer:
0.000003782 m
0.000001891 m
0.000001197125 m
Explanation:
= Wavelength = 248 nm
D = Diameter of beam = 1 cm
f = Focal length = 0.625 cm
The angle is given by

The width is given by

The required width is 0.000003782 m
Minimum resolvable line separation is given by

The minimum resolvable line separation between adjacent lines is 0.000001891 m
when 

The new minimum resolvable line separation between adjacent lines is

:<span> </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s
At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg)
So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road ..
Fn = mg - mv²/R
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards)
(b)
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero.
ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)²
►v = √198 = 14.0 m/s</span>