Answer: 15.8
Explanation:
You are given that the
Object distance U = 32 cm
Focal length F = 30.1 cm
First calculate the image distance V by using the formula
1/F = 1/U + 1/V
Substitute F and V into the formula
1/30.1 = 1/32 + 1/V
1/V = 1/30.1 - 1/32
1/V = 0.00197259
Reciprocate both sides
V = 506.94 cm
Magnification M is the ratio of image distance to object distance.
M = V/U
substitute the values of V and U into the formula
M = 506.94/32
M = 15.8
Therefore, the magnification of the image is 15.8 or approximately 16.
Answer:
m = mass of the penny
r = distance of the penny from the center of the turntable or axis of rotation
w = angular speed of rotation of turntable
F = centripetal force experienced by the penny
centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as
F = m r w²
in the above equation , mass of penny "m" and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .
hence greater the distance from center , greater will be the centripetal force to remain in place.
So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.
Explanation:
Answer:
His acceleration is
Explanation:
Newton's second law states that acceleration of a body is cause by a net force, the relation between them is:

On the boy there're acting two forces, his weight (W) that points downward and the frictional force (f) that points upward (they boy moves downward and friction always is opposite to movement). So
so (1) is:

Using the positive direction downward weight and gravitational acceleration(g) are positive and friction force is negative:
, solving for a:
, weight is mg:


D) Heat, because friction produces heat, not light, gravitational or chemical. hope this helps! : )
Answer:
longitudinal wave
Explanation:
it is perpendicular to the direction of the wave