We are given: Final velocity (
)=20 m/s .
Time t= 2.51 s and
distance s = 82.9 m.
We know, equation of motion

Let us plug values of final velocity, and time in above equation.


Subtracting 2.51a from both sides, we get
-----------equation(1)
Using another equation of motion

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.
We get,

Now, we need to solve it for a.
20-20+2.51a=165.8a.
-163.29a=0
a=0.
So, the acceleration would be 0 m/s^2.
The velocity of the aircraft relative to the ground is 240 km/h North
Explanation:
We can solve this problem by using vector addition. In fact, the velocity of the aircraft relative to the ground is the (vector) sum between the velocity of the aircraft relative to the air and the velocity of the air relative to the ground.
Mathematically:

where
v' is the velocity of the aircraft relative to the ground
v is the velocity of the aircraft relative to the air
is the velocity of the air relative to the ground.
Taking north as positive direction, we have:
v = +320 km/h
(since the air is moving from North)
Therefore, we find
(north)
Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
Velocity = frequency * wavelength
v = fλ, Just pick any points on the graph for frequency f and corresponding λ. Taking the first red point at the top. λ = 6m, f = 1 Hz, v = 6 * 1, v = 6 m/s
V = 6 M/S
Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.