answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
1 year ago
15

A typical meteor that hits the earth's upper atmosphere has a mass of only 2.5 g, about the same as a penny, but it is moving at

an impressive 40 km/s. As the meteor slows, the resulting thermal energy makes a glowing streak across the sky, a shooting star. The small mass packs a surprising punch.
At what speed would a 900 kg compact car need to move to have the same kinetic energy?
Physics
1 answer:
attashe74 [19]1 year ago
8 0

Answer:

Answer:u=66.67 m/s

Explanation:

Given

mass of meteor m=2.5 gm\approx 2.5\times 10^{-3} kg

velocity of meteor v=40km/s \approx 40000 m/s

Kinetic Energy of Meteor

K.E.=\frac{mv^2}{2}

K.E.=\frac{2.5\times 10^{-3}\times (4000)^2}{2}

K.E.=2\times 10^6 J

Kinetic Energy of Car

=\frac{1}{2}\times Mu^2

=\frac{1}{2}\times 900\times u^2

\frac{1}{2}\times 900\times u^2=2\times 10^6  

900\times u^2=4\times 10^6

u^2=\frac{4}{9}\times 10^4

u=\frac{2}{3}\times 10^2

u=66.67 m/s

You might be interested in
A fighter jet is catapulted off an aircraft carrier from rest to 75 m/s. If the aircraft carrier deck is 100 m long, what is the
egoroff_w [7]

The acceleration of the jet is 28.1 m/s^2

Explanation:

Since the motion of the jet is a uniformly accelerated motion, we can use the following suvat equation:

v^2-u^2=2as

where

v is the final velocity

u is the initial velocity

a is the acceleration

s is the displacement

For the jet in this problem, we have

u = 0

v = 75 m/s

s = 100 m

Solving for a, we find the acceleration:

a=\frac{v^2-u^2}{2s}=\frac{75^2-0}{2(100)}=28.1 m/s^2

Learn more about acceleration:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

4 0
2 years ago
The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope. The sl
KonstantinChe [14]

Answer:

Acceleration, a=1.2\ m/s^2

Explanation:

Given that,

The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope, m = 100 kg

Force exerted by the doges on the rope attached to the front sled, F = 240 N

To find,

The acceleration of the sleds.

Solution,

Let a is the acceleration of the sleds. The product of mass and acceleration is called force. Its expression is given by :

F = ma

a=\dfrac{F}{m}

a=\dfrac{240\ N}{2\times 100\ kg} (m = 2m)

a=1.2\ m/s^2

So, the acceleration of the sleds is 1.2\ m/s^2.

6 0
2 years ago
A 28-kg particle exerts a gravitational force of 8.3 x 10^-9 N on a particle of mass m, which is 3.2 m away. What is m? A) 140 k
xxTIMURxx [149]

Answer:

Mass of another particle, m = 46 kg  

Explanation:

it is given that,

Mass of first particle, m₁ = 28 kg

Gravitational force, F=8.3\times 10^{-9}\ N

Distance between the particles, d = 3.2 m

We need to find the mass m of another particle. It is given by the formula as follows :

F=G\dfrac{m_1m}{d^2}

m=\dfrac{Fd^2}{Gm_1}

m=\dfrac{8.3\times 10^{-9}\ N\times (3.2\ m)^2}{6.67\times 10^{-11}\times 28\ kg}

m = 45.5 kg

or

m = 46 kg

So, the correct option is (d) "46 kg". Hence, this is the required solution.

6 0
2 years ago
On a warm summer day (31 ∘c), it takes 4.60 s for an echo to return from a cliff across a lake. on a winter day, it takes 5.00 s
xenn [34]
The question is missing, but I guess the problem is asking for the distance between the cliff and the source of the sound.

First of all, we need to calculate the speed of sound at temperature of T=31^{\circ}C:
v=(331+0.60 T) m/s = (331+0.6 \cdot 31) m/s = 349.6 m/s

The sound wave travels from the original point to the cliff and then back again to the original point in a total time of t=4.60 s. If we call L the distance between the source of the sound wave and the cliff, we can write (since the wave moves by uniform motion):
v= \frac{2L}{t}
where v is the speed of the wave, 2L is the total distance covered by the wave and t is the time. Re-arranging the formula, we can calculate L, the distance between the source of the sound and the cliff:
L= \frac{vt}{2}= \frac{(349.6 m/s)/4.60 s)}{2}=  804.1 m
6 0
2 years ago
A balanced chemical equation reflects the idea that the mass of the products. A.is greater than the mass of the reactants. B.is
torisob [31]

Answer:

My answer to the question is option C.

8 0
2 years ago
Read 2 more answers
Other questions:
  • A highway patrolman traveling at the speed limit is passed by a car going 20 mph faster than the speed limit. After one minute,
    13·2 answers
  • Most of the nutrients in the rainforest ecosystem are in the _____.
    8·2 answers
  • While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
    6·2 answers
  • A mover pushes a 255 kg piano
    14·1 answer
  • A tank of water is in the shape of a cone (assume the ""point"" of the cone is pointing downwards) and is leaking water at a rat
    10·1 answer
  • In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their component
    9·1 answer
  • The study of alternating electric current requires the solutions of equations of the form i equals Upper I Subscript max Baselin
    13·1 answer
  • A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it
    9·1 answer
  • A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
    15·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!