Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.
The frequency of the radio wave is:

The wavelength of an electromagnetic wave is related to its frequency by the relationship

where c is the speed of light and f the frequency. Plugging numbers into the equation, we find

and this is the wavelength of the radio waves in the problem.
Charge on can A is positive.
Charge on can C is negative.
Punctuation and capitalization are very useful things to pay attention to and this question would be a lot easier to understand if you had actually used both capitalization and punctuation. If I'm understanding the question, you have 3 metal can that are insulated from the environment and initially touching each other in a straight line. Then a negatively charged balloon is brought near, but not touching one of the cans in that line of cans. While the balloon is near, the middle can is removed. Then you want to know the charge on the can that was nearest the balloon and the charge on the can that was furthermost from the balloon.
As the balloon is brought near to can a, the negative charge on the balloon repels some of the electrons from can a (like charges repel). Some of those electrons will flow to can b and in turn flow to can c. Basically you'll have a charge gradient that's most positive on that part of the can that's closest to the balloon, and most negative on the part of the cans that's furthest from the balloon. You then remove can B which causes cans A and C to be electrically isolated from each other and prevents the flow of elections to equalize the charges on cans A and C when the balloon is removed. So you're left with a deficiency of electrons on can A, so can A will have a positive overall charge, and an excess of electrons on can C, so can C will have a negative overall charge.
<span>E = h x f </span>
<span>. . . then : </span>
<span>f = E / h </span>
<span>f = 4,41•10^-19 / 6,62•10^-34 </span>
<span>f = 6,66•10^14 Hz (s^-1) </span>
<span>b/ What is the wavelength of this light ? </span>
<span>- - - - - - - - - - - - - - - - - - - - - - - - - - - - </span>
<span>λ = c / f </span>
<span>λ = 3•10^8 / 6,66•10^14 </span>
<span>λ = 4,50•10^-7 m </span>
Answer:
The answer is not correct.
Explanation:
Stu's answer is not correct, the equation to use is known as the law of ohm. In which the voltage is defined as the product of the current by the resistance, then we will see this equation.
![V = I*R\\where:\\I = current [amp]\\R = resistance [ohm]\\V = voltage [volts]\\](https://tex.z-dn.net/?f=V%20%3D%20I%2AR%5C%5Cwhere%3A%5C%5CI%20%3D%20current%20%5Bamp%5D%5C%5CR%20%3D%20resistance%20%5Bohm%5D%5C%5CV%20%3D%20voltage%20%5Bvolts%5D%5C%5C)
In order to find resistance, this term is found multiplying the current on the right side of the equation, therefore the current will be divided on the left side of the equation.
![R=\frac{V}{I} \\replacing:\\R=\frac{4}{0.5} \\R=8[ohms]](https://tex.z-dn.net/?f=R%3D%5Cfrac%7BV%7D%7BI%7D%20%5C%5Creplacing%3A%5C%5CR%3D%5Cfrac%7B4%7D%7B0.5%7D%20%5C%5CR%3D8%5Bohms%5D)
That is the reason that the result found by Stu is not correct.