Answer:
Kinetic energy is given by:
K.E. = 0.5 m v²
Susan has mass, m = 25 kg
Velocity with which Susan moves is, v = 10 m/s
Hannah has mass, m' = 30 kg
Velocity with which Hannah moves is, v' = 8.5 m/s
<u>Kinetic energy of Susan:</u>
0.5 m v² = 0.5 × 25 kg × (10 m/s)² = 1250 J
<u>Kinetic energy of Hannah:</u>
0.5 m v'² = 0.5 × 30 kg × (8.5 m/s)² = 1083.75 J
Susan's kinetic energy is <u>1250 J </u>and Hannah's kinetic energy is <u>1083.75 J</u>.
Since kinetic energy is dependent on mass and square of speed. Thus, speed has a greater effect than mass. As it is evident from the above example. Susan has greater kinetic energy due to higher speed than Hannah.
Answer:
a=
Explanation:
The net force,
of the box is expressed as a product of acceleration and mass hence
where m is mass and a is acceleration
Making a the subject, a= 
From the attached sketch,
∑
where
is frictional force and
is horizontal angle
Substituting ∑
as
in the equation where we made a the subject
a= 
Since we’re given the value of F as 240N,
as 41.5N,
as
and mass m as 30kg
a= 
Answer:
magnetic flux ΦB = 0.450324 ×
weber
current I = 1.02484
A
Explanation:
Given data
length a = 2.2 cm = 0.022 m
width b = 0.80 cm = 0.008 m
Resistance R = 0.40 ohms
current I = 4.7 A
speed v = 3.2 mm/s = 0.0032 m/s
distance r = 1.5 b = 1.5 (0.008) = 0.012
to find out
magnitude of magnetic flux and the current induced
solution
we will find magnitude of magnetic flux thorough this formula that is
ΦB = ( μ I(a) /2 π ) ln [(r + b/2 ) /( r -b/2)]
here μ is 4π ×
put all value
ΦB = (4π ×
4.7 (0.022) /2 π ) ln [(0.012+ 0.008/2 ) /( 0.012 -0.008/2)]
ΦB = 0.450324 ×
weber
and
current induced is
current = ε / R
current = μ I(a) bv / 2πR [(r² ) - (b/2 )² ]
put all value
current = μ I(a) bv / 2πR [(r² ) - (b/2 )² ]
current = 4π ×
(4.7) (0.022) (0.008) (0.0032) / 2π(0.40) [(0.012² ) - (0.008/2 )² ]
current = 1.02484
A
The average speed can be easily calculated by taking the
ratio of distance and time. That is:
average speed = distance / time
so calculating:
average speed = 4875 ft / 6.85 minutes
<span>average speed = 711.68 ft / min</span>