answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
1 year ago
5

The electric potential in a particular region of space varies only as a function of y-position and is given by the function V(y)

1.69y2 +15.6y 52.5) Volts. Calculate the magnitude of the electric field at the position y - 22.5 meters
Physics
1 answer:
nikdorinn [45]1 year ago
3 0

Answer:

E = 55.9583\ Volts/meter

Explanation:

First let's find the electric potential using y = 22.5:

V(y) = 1.69y^2 +15.6y+52.5

V(22.5) = 1.69(22.5)^2 + 15.6*22.5 + 52.5

V(22.5) = 1259.0625\ Volts

Then, to find the magnitude of the electric field, we just need to divide the electric potential by the distance y:

E = V/d

E = 1259.0625/22.5

E = 55.9583\ Volts/meter

You might be interested in
Kathmandu lies at high altitude than biratnagar from sea level.Where does an object has more weight between two places?Give reas
Alla [95]

Answer:

Kathmandu

Explanation:

As the altitude get higher, the gravitational pull of the earth on the object increases, therefore, the mass is higher up above.

8 0
1 year ago
The sound level at 1.0 m from a certain talking person talking is 60 dB. You are surrounded by five such people, all 1.0 m from
Hunter-Best [27]

Answer:

66.98 db

Explanation:

We know that

L_T=L_S+10log(n)

L_T= Total signal level in db

n= number of sources

L_S= signal level from signal source.

L_T=60+10 log(5)

= 66.98 db

7 0
1 year ago
Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
Lesechka [4]

Answer:

Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Explanation:

Consider four possible cases.

<h3>Case A: 12.0 V.</h3>

-\begin{array}{c}-{\bf 2.0\;\mu\text{F}-}\\-1.5\;\mu\text{F}- \\-3.0\;\mu\text{F}-\end{array}-

In case all three capacitors are connected in parallel, the 2.0\;\mu\text{F} capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.

<h3>Case B: 5.54 V.</h3>

-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-

In case the 2.0\;\mu\text{F} capacitor is connected in parallel with the 1.5\;\mu\text{F} capacitor, and the two capacitors in parallel is connected to the 3.0\;\mu\text{F} capacitor in series.

The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.

The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_3}+ \dfrac{1}{C_1+C_2}} = \frac{1}{\dfrac{1}{3.0}+\dfrac{1}{2.0+1.5}} = 1.62\;\mu\text{F}.

What will be the voltage across the 2.0 μF capacitor?

The charge stored in two capacitors in series is the same as the charge in each capacitor.

Q = C(\text{Effective}) \cdot V = 1.62\;\mu\text{F}\times 12\;\text{V} = 19.4\;\mu\text{C}.

Voltage is the same across two capacitors in parallel.As a result,

\displaystyle V_1 = V_2 = \frac{Q}{C_1+C_2} = \frac{19.4\;\mu\text{C}}{3.5\;\mu\text{F}} = 5.54\;\text{V}.

<h3>Case C: 2.76 V.</h3>

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Similarly,

  • the effective capacitance of the two capacitors in parallel is 5.0 μF;
  • the effective capacitance of the three capacitors, combined: \displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_2}+ \dfrac{1}{C_1+C_3}} = \frac{1}{\dfrac{1}{1.5}+\dfrac{1}{2.0+3.0}} = 1.15\;\mu\text{F}.

Charge stored:

Q = C(\text{Effective}) \cdot V = 1.15\;\mu\text{F}\times 12\;\text{V} = 13.8\;\mu\text{C}.

Voltage:

\displaystyle V_1 = V_3 = \frac{Q}{C_1+C_3} = \frac{13.8\;\mu\text{C}}{5.0\;\mu\text{F}} = 2.76\;\text{V}.

<h3 /><h3>Case D: 4.00 V</h3>

-2.0\;\mu\text{F}-1.5\;\mu\text{F}-3.0\;\mu\text{F}-.

Connect all three capacitors in series.

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_1} + \dfrac{1}{C_2}+\dfrac{1}{C_3}} =\frac{1}{\dfrac{1}{2.0} + \dfrac{1}{1.5}+\dfrac{1}{3.0}} =0.667\;\mu\text{F}.

For each of the three capacitors:

Q = C(\text{Effective})\cdot V = 0.667\;\mu\text{F} \times 12\;\text{V} = 8.00\;\mu\text{C}.

For the 2.0\;\mu\text{F} capacitor:

\displaystyle V_1=\frac{Q}{C_1} = \frac{8.00\;\mu\text{C}}{2.0\;\mu\text{F}} = 4.0\;\text{V}.

6 0
1 year ago
A table tennis ball with a mass of 0.003 kg and a soccer ball with a mass of 0.43 kg or both Serta name motion at 16 M/S calcula
poizon [28]
Let us first know the given: Tennis ball has a mass of 0.003 kg, Soccer ball has a mass of 0.43 kg. Having the same velocity at 16 m/s. First the equation for momentum is P=MV P=Momentum M=Mass V=Velocity. Now let us have the solution for the momentum of tennis ball. Pt=0.003 x 16 m/s= (    kg-m/s ) I use the subscript "t" for tennis.  Momentum of Soccer ball Ps= 0.43 x 13m/s = (      km-m/s). If we going to compare the momentum of both balls, the heavier object will surely have a greater momentum because it has a larger mass, unless otherwise  the tennis ball with a lesser mass will have a greater velocity to be equal or greater than the momentum of a soccer ball.
8 0
2 years ago
Read 2 more answers
A wave travels through a medium at 251 m/s and has a wavelength of 5.10 cm. What is its frequency? What is its angular frequency
allochka39001 [22]

Explanation:

It is given that,

Speed of a wave, v = 251 m/s

Wavelength of the wave, λ = 5.1 cm = 0.051 m

(1) The frequency of the wave is given by :

\nu=\dfrac{v}{\lambda}

\nu=\dfrac{251\ m/s}{0.051\ m}

\nu=4921.56\ Hz

(2) Angular frequency of the wave is given by :

\omega=2\pi\nu

\omega=2\pi\times 4921.56\ Hz

\omega=30923.07\ rad/s

(3) The period of oscillation is given by T as :

T=\dfrac{1}{\nu}

T=\dfrac{1}{4921.56}

T = 0.000203 seconds

or

T = 0.203 milliseconds

Hence, this is the required solution.

5 0
1 year ago
Other questions:
  • A system delivers 1275 j of heat while the surroundings perform 855 j of work on it. calculate ∆esys in j.
    8·1 answer
  • Which statement describes one way in which global winds affect weather and climate? A. Polar easterlies move warm air to the mid
    14·2 answers
  • An ice rescue team pulls a stranded hiker off a frozen lake by throwing him a rope and pulling him horizontally across the essen
    13·1 answer
  • When a particle is a distance r from the origin, its potential energy function is given by the equation U(r)=kr, where k is a co
    6·1 answer
  • For a short time the position of a roller-coaster car along its path is defined by the equations r=25 m, θ=(0.3t) rad, and z=(−8
    14·1 answer
  • A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a
    12·1 answer
  • An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the
    15·1 answer
  • Difference between calorimeter and thermometer ?
    8·2 answers
  • A wind turbine with a rotor diameter of 40 m produces 90 kW of electrical power when the wind speed is 8 m/s. The density of air
    14·1 answer
  • If the ball is 0.60 mm from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!