answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
telo118 [61]
2 years ago
6

Kathmandu lies at high altitude than biratnagar from sea level.Where does an object has more weight between two places?Give reas

on
​
Physics
1 answer:
Alla [95]2 years ago
8 0

Answer:

Kathmandu

Explanation:

As the altitude get higher, the gravitational pull of the earth on the object increases, therefore, the mass is higher up above.

You might be interested in
The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
faust18 [17]

Answer:

Finally current will be

i = 0.35 A

Explanation:

As we know that power of the bulb is given by the formula

P = \frac{V^2}{R}

now we have

P = 60 W

R = 240 ohm

so we have

60 = \frac{V^2}{240}

V = 120 Volts

now the current in the bulb is given as

i = \frac{V}{R}

i = \frac{120}{240} = 0.5 A

now when length of the filament is double

so the resistance of the wire also gets double

so we have

P = \frac{V^2}{R}

60 = \frac{V^2}{480}

V = 169.7 volts

now the current in the bulb is given as

V = i R

169.7 = i(480)

i = 0.35 A

8 0
2 years ago
When explaining chemical reactions to a friend, Brianna models a reaction by taking several colors of modeling clay and making a
Drupady [299]

Answer: synthesis

Explanation:

5 0
2 years ago
Read 2 more answers
A force of 250 N is applied to a hydraulic jack piston that is 0.02 m in diameter. If the piston that supports the load has a di
Vikentia [17]

Answer:

option B

Explanation:

given,

Force exerted by the hydraulic jack piston = F₁ = 250 N

diameter of piston, d₁ = 0.02 m

                                r₁ = 0.01 m

diameter of second piston,  d₂ = 0.15 m

                                r₂ = 0.075 m

mass of the jack to lift = ?

now,

    \dfrac{F_1}{A_1} =\dfrac{F_2}{A_2}

    \dfrac{250}{\pi r_1^2} =\dfrac{F_2}{\pi r_2^2}

    \dfrac{250}{0.01^2} =\dfrac{F_2}{0.075^2}

    F_2= \dfrac{250}{0.01^2}\times {0.075^2}

               F₂ = 14062.5 N

F = m g

m = \dfrac{F}{g}

m = \dfrac{14062.5}{9.8}

m = 1435 Kg

hence, the correct answer is option B

5 0
2 years ago
When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
MA_775_DIABLO [31]

Answer:

If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

Explanation:

R₁ = Resistance of first resistor

R₂ = Resistance of second resistor

V = Voltage of battery = 12 V

I = Current = 0.33 A (series)

I = Current = 1.6 A (parallel)

In series

\text{Equivalent resistance}=R_{eq}=R_1+R_2\\\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{0.33}\\\Rightarrow R_1+R_2=36.36\\ Also\ R_1=36.36-R_2

In parallel

\text{Equivalent resistance}=\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}\\\Rightarrow {R_{eq}=\frac{R_1R_2}{R_1+R_2}

\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{1.6}\\\Rightarrow \frac{R_1R_2}{R_1+R_2}=7.5\\\Rightarrow \frac{R_1R_2}{36.36}=7.5\\\Rightarrow R_1R_2=272.72\\\Rightarrow(36.36-R_2)R_2=272.72\\\Rightarrow R_2^2-36.36R_2+272.72=0

Solving the above quadratic equation

\Rightarrow R_2=\frac{36.36\pm \sqrt{36.36^2-4\times 272.72}}{2}

\Rightarrow R_2=25.78\ or\ 10.57\\ If\ R_2=25.78\ then\ R_1=36.36-25.78=10.58\ \Omega\\ If\ R_2=10.57\ then\ R_1=36.36-10.57=25.79\Omega

∴ If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

6 0
2 years ago
A metal has a strength of 414 MPa at its elastic limit and the strain at that point is 0.002. Assume the test specimen is 12.8-m
ser-zykov [4K]

To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables

Yield Strength of the metal specimen

S_{el} = 414Mpa

Yield Strain of the Specimen

\epsilon_{el} = 0.002

Diameter of the test-specimen

d_0 = 12.8mm

Gage length of the Specimen

L_0 = 50mm

Modulus of elasticity

E = \frac{S_{el}}{\epsilon_{el}}

E = \frac{414Mpa}{0.002}

E = 207Gpa

Strain energy per unit volume at the elastic limit is

U'_{el} = \frac{1}{2} S_{el} \cdot \epsilon_{el}

U'_{el} = \frac{1}{2} (414)(0.002)

U'_{el} = 414kN\cdot m/m^3

Considering that the net strain energy of the sample is

U_{el} = U_{el}' \cdot (\text{Volume of sample})

U_{el} =  U_{el}'(\frac{\pi d_0^2}{4})(L_0)

U_{el} = (414)(\frac{\pi*0.0128^2}{4}) (50*10^{-3})

U_{el} = 2.663N\cdot m

Therefore the net strain energy of the sample is 2.663N\codt m

6 0
1 year ago
Other questions:
  • Is a dimond a pure substance? yes or no
    7·2 answers
  • Find τf, the torque about point p due to the force applied by the achilles' tendon.
    11·1 answer
  • A tennis ball bounces on the floor three times, and each time it loses 23.0% of its energy due to heating. how high does it boun
    9·1 answer
  • The 12.2-m crane weighs 18 kn and is lifting a 67-kn load. the hoisting cable (tension t1) passes over a pulley at the top of th
    5·1 answer
  • A space probe is built with a mass of 1700 pound-mass [lbm] before launch on Earth. The probe is powered by four ion thrusters,
    8·2 answers
  • A small cork with an excess charge of +6.0µC is placed 0.12 m from another cork, which carries a charge of -4.3µC.
    11·1 answer
  • Which word identifies a large natural or human-made lake used to supply water?
    7·2 answers
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
  • Which shows the correct lens equation? The inverse of f equals the inverse of d Subscript o Baseline times the inverse of d Subs
    16·2 answers
  • If F1 is the force on q due to Q1 and F2 is the force on q due to Q2, how do F1 and F2 compare? Assume that n=2.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!