answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikklg [1K]
2 years ago
15

If you're ever standing on a mountaintop when a dark cloud passes overhead and your hair stands up, get off the mountain fast. H

ow would your hair have acquired the charge to make it stand up?
Physics
1 answer:
OleMash [197]2 years ago
8 0

Answer:

The hairs would have acquired charge by the passing of dry winds resulting in the loss of electron.

Explanation:

While standing on the top of a mountain if a person gets its hairs stand up after a cloud passes over, this might happen due to the static electric charges on the lower surface of the cloud  are opposite in nature to that of hairs which the hairs would have acquired by the passing of dry winds which would have resulted in the loss of electron from the hair tip.

Similar case happens when we rub a dry plastic ruler or a dry plastic comb on our hairs.

You might be interested in
A 1500-kg car locks its brakes and skids to a stop on a slippery horizontal road, leaving skid marks that are 15 m long. How muc
Harman [31]

Answer:

E=88200\ J

Explanation:

Given:

  • mass of car, m=1500\ kg
  • distance of skidding after the application of brakes, d=15\ m
  • coefficient of kinetic friction, \mu_k=0.4

<u>So, the energy dissipated during the skidding of car:</u>

<em>Frictional force:</em>

f=\mu_k.N

where N = normal reaction by ground on the car

f=0.4\ties 1500\times 9.8

f=5880\ N

<em>Now from the work-energy equivalence:</em>

E=f.d

E=5880\times 15

E=88200\ J is the dissipated energy.

3 0
2 years ago
Calculate the acceleration of the body of mass 3kg on which a force of 42N has been applied for 5s
____ [38]
F=ma

42/3 = a
a = 14m/s^2
5 0
2 years ago
A player kicks a football into the air. It slows to a stop at its highest point in the air before falling to the ground. Which s
vivado [14]

Answer:

The ball slows down in the air due to an unbalanced force

Explanation:

When player kicks the ball, there are mainly two foces acting on this object: the force made by the player and the opposite force of gravity (which acts with a direction always to the centre of the Earth)

The force applied by the player will be decreasing, while the force of gravity is always constant, this will make that both forces will unbalance, making the football´s speed slow down

8 0
2 years ago
Read 2 more answers
A mass of 0.4 kg hangs motionless from a vertical spring whose length is 0.76 m and whose unstretched length is 0.41 m. Next the
Blizzard [7]
<h3><u>Answer;</u></h3>

= 1.256 m

<h3><u>Explanation;</u></h3>

We can start by finding the spring constant  

F = k*y  

Therefore;  k = F/y = m*g/y

                               = 0.40kg*9.8m/s^2/(0.76 - 0.41)

                               = 11.2 N/m  

Energy is conserved  

Let A be the maximum displacement  

Therefore;  1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2  

Thus;  A = sqrt((1.20 - 0.55)^2 + m/k*v^2)

               = sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)

                = 0.846 m  

Thus; the length will be 0.41 + 0.846  = 1.256 m

6 0
2 years ago
Consider a spring that does not obey Hooke’s law very faithfully. One end of the spring is fixed. To keep the spring stretched o
IRINA_888 [86]

Answer:

a) W=-0.0103125\ J

b) W=0.0059375\ J

c) Compressing is easier

Explanation:

Given:

Expression of force:

F=kx-bx^2+cx^3

where:

k=100\ N.m^{-1}

b=700\ N.m^{-2}

c=12000\ N.m^{-3}

x when the spring is stretched

x when the spring is compressed

hence,

F=100x-700x^2+12000x^3

a)

From the work energy equivalence the work done is equal to the spring potential energy:

here the spring is stretched so, x=-0.05\ m

Now,

The spring constant at this instant:

j=\frac{F}{x}

j=\frac{100\times (-0.05)-700\times (-0.05)^2+12000\times (-0.05)^3}{-0.05}

j=-8.25\ N.m^{-1}

Now work done:

W=\frac{1}{2} j.x^2

W=0.5\times -8.25\times (-0.05)^2

W=-0.0103125\ J

b)

When compressing the spring by 0.05 m

we have, x=0.05\ m

<u>The spring constant at this instant:</u>

j=\frac{F}{x}

j=\frac{100\times (0.05)-700\times (0.05)^2+12000\times (0.05)^3}{0.05}

j=4.75\ N.m^{-1}

Now work done:

W=\frac{1}{2} j.x^2

W=0.5\times 4.75\times (0.05)^2

W=0.0059375\ J

c)

Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.

8 0
2 years ago
Other questions:
  • Einstein's equation E=mc2 helps scientists understand the sun's energy because the equation..
    11·2 answers
  • What is the most power in watts the ear can receive before the listener feels pain?
    10·1 answer
  • What is the longest wavelength light capable of ionizing a hydrogen atom in the ground state?
    12·1 answer
  • 2H2S(g)⇌2H2(g)+S2(g),Kc=1.67×10−7 at 800∘C is carried out at the same temperature with the following initial concentrations: [H2
    6·2 answers
  • A ball hangs on the end of a string that is connected to the ceiling so that it swings like a pendulum. You pull the ball up so
    5·1 answer
  • A 5.0-kilogram box is sliding across a level floor. The box is acted upon by a force of 27 newtons east and a frictional force o
    14·2 answers
  • You know that you sound better when you sing in the shower. This has to do with the amplification of frequencies that correspond
    9·1 answer
  • Identify the row that contains two scalars and one vector quantity: Distance Acceleration Velocity Speed Mass Acceleration Dista
    12·1 answer
  • A finite rod of length L has total charge q, distributed uniformly along its length. The rod lies on the x -axis and is centered
    5·1 answer
  • Solenoid 2 has twice the diameter, twice the length, and twice as many turns as solenoid 1. How does the field B2 at the center
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!