answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
2 years ago
13

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el

ectric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
Physics
1 answer:
Tresset [83]2 years ago
5 0

Complete Question

An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.

I = 1.2 A at time 5 secs.

Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.

Answer:

The charge is  Q =2.094 C

Explanation:

From the question we are told that

    The diameter of the wire is  d =  0.205cm = 0.00205 \ m

     The radius of  the wire is  r =  \frac{0.00205}{2} = 0.001025  \ m

     The resistivity of aluminum is 2.75*10^{-8} \ ohm-meters.

       The electric field change is mathematically defied as

         E (t) =  0.0004t^2 - 0.0001 +0.0004

     

Generally the charge is  mathematically represented as

       Q = \int\limits^{t}_{0} {\frac{A}{\rho} E(t) } \, dt

Where A is the area which is mathematically represented as

       A =  \pi r^2 =  (3.142 * (0.001025^2)) = 3.30*10^{-6} \ m^2

 So

       \frac{A}{\rho} =  \frac{3.3 *10^{-6}}{2.75 *10^{-8}} =  120.03 \ m / \Omega

Therefore

      Q = 120 \int\limits^{t}_{0} { E(t) } \, dt

substituting values

      Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt

     Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | t} \atop {0}} \right.

From the question we are told that t =  5 sec

           Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] }  \left | 5} \atop {0}} \right.

          Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }

         Q =2.094 C

     

Guest
1 year ago
Sorry, but how do you get the mathematical representation of the charge?
You might be interested in
Wind blows at the speed of 30m/s across a 175m^2 flat roof if a house.
Makovka662 [10]

Answer:

the net force is 101587.5 N

Explanation:

The speed of wind

v = 30 m/s

The area of roof,

A = 175 m 2

The expression for the Bernoulli's theorem.

P = 12 ρv 2 ...... (1)

Here,

P is the pressure difference,

ρ is the density of air and

v is the speed of wind.

The expression for the pressure.

P = F A ..... (2)

Here,

F is the force and

A is the area of roof.

Part (a)

Substitute the values for the pressure difference in equation (1)

P = 12 × 1.29 × (30) 2 P = 580.5 Pa

Thus, the pressure difference at the roof between the inside and outside air is

580.5 Pa

Part (b)

Substitute the values for the net force in equation (2)

580.5 = F 175 F = 101587.5 N

Thus, the net force is 101587.5 N.

8 0
2 years ago
An astronaut exploring a distant solar system lands on an unnamed planet with a radius of 2530 km. When the astronaut jumps upwa
Natali [406]

Answer:

1.38*10^18 kg

Explanation:

According to the Newton's law of universal gravitation:

F=G*\frac{m_a*m_p}{r^2}

where:

G= Gravitational constant (6.674×10−11 N · (m/kg)2)

ma= mass of the astronaut

mp= mass of the planet

F=m_a.a\\(v_f )^2=(v_o)^2+2.a.\Delta y\\\\a=\frac{(v_f)^2-(v_o)^2}{2.\Delta y}\\\\a=\frac{(0)^2-(4.29m/s)^2}{2.0.64m}=14.38m/s^2\\\\F=m_a*14.38m/s^2

so:

m_a*14.38m/s^2=(6.674*10^{-11}N.(m/kg)^2)*\frac{m_a.m_p}{(2.530*10^3m)^2}\\m_p=\frac{14.38m/s^2(2.530*10^3m)^2}{(6.674*10^{-11}N.(m/kg)^2)}\\\\m_p=1.38*10^{18}kg

7 0
2 years ago
yami pours powdered cocoa mix into milk and stirs it. then she microwaves the mixture for three minutes. when she takes the cup
MrRa [10]
Convection can best be observed as she blows the warm steam air that rises.

As the warm steam rises,  she forces displaces it with cool air from her mouth. Because the warm steam is less dense it rises and because the cool air is more dense, it displaces the warm air.

This scenario is an example of convection.
 
6 0
2 years ago
Read 2 more answers
The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371
arsen [322]

Answer : The correct option is, (B) -5448 kJ/mol

Explanation :

First we have to calculate the heat required by water.

q=m\times c\times (T_2-T_1)

where,

q = heat required by water = ?

m = mass of water = 250 g

c = specific heat capacity of water = 4.18J/g.K

T_1 = initial temperature of water = 293.0 K

T_2 = final temperature of water = 371.2 K

Now put all the given values in the above formula, we get:

q=250g\times 4.18J/g.K\times (371.2-293.0)K

q=81719J

Now we have to calculate the enthalpy of combustion of octane.

\Delta H=\frac{q}{n}

where,

\Delta H = enthalpy of combustion of octane = ?

q = heat released = -81719 J

n = moles of octane = 0.015 moles

Now put all the given values in the above formula, we get:

\Delta H=\frac{-81719J}{0.015mole}

\Delta H=-5447933.333J/mol=-5447.9kJ/mol\approx -5448kJ/mol

Therefore, the enthalpy of combustion of octane is -5448 kJ/mol.

5 0
2 years ago
When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
MA_775_DIABLO [31]

Answer:

If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

Explanation:

R₁ = Resistance of first resistor

R₂ = Resistance of second resistor

V = Voltage of battery = 12 V

I = Current = 0.33 A (series)

I = Current = 1.6 A (parallel)

In series

\text{Equivalent resistance}=R_{eq}=R_1+R_2\\\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{0.33}\\\Rightarrow R_1+R_2=36.36\\ Also\ R_1=36.36-R_2

In parallel

\text{Equivalent resistance}=\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}\\\Rightarrow {R_{eq}=\frac{R_1R_2}{R_1+R_2}

\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{1.6}\\\Rightarrow \frac{R_1R_2}{R_1+R_2}=7.5\\\Rightarrow \frac{R_1R_2}{36.36}=7.5\\\Rightarrow R_1R_2=272.72\\\Rightarrow(36.36-R_2)R_2=272.72\\\Rightarrow R_2^2-36.36R_2+272.72=0

Solving the above quadratic equation

\Rightarrow R_2=\frac{36.36\pm \sqrt{36.36^2-4\times 272.72}}{2}

\Rightarrow R_2=25.78\ or\ 10.57\\ If\ R_2=25.78\ then\ R_1=36.36-25.78=10.58\ \Omega\\ If\ R_2=10.57\ then\ R_1=36.36-10.57=25.79\Omega

∴ If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

6 0
2 years ago
Other questions:
  • If you know the amount of the unbalanced force acting upon an object and the mass of the object, using Newton's 2nd Law what cou
    6·2 answers
  • At a distance of 0.75 meters from its center, a Van der Graff generator interacts as if it were a point charge, with that charge
    14·2 answers
  • A technician is working on an MRI machine. To test it, the technician turns on the MRI machine that produces a strong magnetic f
    15·1 answer
  • To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will
    7·2 answers
  • A 2.00-kg box is suspended from the end of a light vertical rope. A time-dependent force is applied to the upper end of the rope
    13·1 answer
  • A charge Q is distributed uniformly along the x axis from x1 to x2. What would be the magnitude of the electric field at x0 on t
    8·1 answer
  • A series circuit contains an 80-μF capacitor, a 0.020-H inductor, and a switch. The resistance of the circuit is negligible. Ini
    14·1 answer
  • 1. Which of the following regarding a collision is/are true? a. If you triple your speed your force of impact will be three time
    11·2 answers
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kgkg when weighed in air. The density o
    5·1 answer
  • Which ramp requires the least amount of force?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!