Answer:
(1) En to n-1 = 0.55 ev
(2) En-1 to n-2 = 0.389 ev
(3) ninitial =4
(4) L =483.676 ×10^-11 nm
(5) λlongest= 1773.33 nm
Explanation:
Detailed explanation of answer is given in the attached files.
Answer:
buoyant force on the block due to the water= 10 N
Explanation:
We know that
buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.
Given:
A block of metal weighs 40 N in air and 30 N in water.
F_B = 40-30= 10 N
therefore, buoyant force on the block due to the water= 10 N
Answer:
1.05 N
Explanation:
K = 0.7 N/m
e = 1.5 m
F = ?
from Hooke's law of elasticity
F = Ke
= 0.7×1.5
= 1.05 N
Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.
Answer:
kick 1 has travelled 15 + 15 = 30 yards before hitting the ground
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards
Explanation:
1st kick travelled 15 yards to reach maximum height of 8 yards
so, it has travelled 15 + 15 = 30 yards before hitting the ground
2nd kick is given by the equation
y (x) = -0.032x(x - 50)

we know that maximum height occurs is given as


and maximum height is

y = 20
so kick 2 travels 25 + 25 = 50 yards before hitting the ground
first kick reached 8 yards and 2nd kick reached 20 yards