Answer:
The bomb will remain in air for <u>17.5 s</u> before hitting the ground.
Explanation:
Given:
Initial vertical height is, 
Initial horizontal velocity is, 
Initial vertical velocity is, 
Let the time taken by the bomb to reach the ground be 't'.
So, consider the equation of motion of the bomb in the vertical direction.
The displacement of the bomb vertically is 
Acceleration in the vertical direction is due to gravity, 
Therefore, the displacement of the bomb is given as:

So, the bomb will remain in air for 17.5 s before hitting the ground.
Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
Answer:
The equilibrium temperature is
21.97°c
Explanation:
This problem bothers on the heat capacity of materials
Given data
specific heat capacities
copper is Cc =390 J/kg⋅C∘,
aluminun Ca = 900 J/kg⋅C∘,
water Cw = 4186 J/kg⋅C∘.
Mass of substances
Copper Mc = 235g
Aluminum Ma = 135g
Water Mw = 825g
Temperatures
Copper θc = 255°c
Water and aluminum calorimeter θ1= 16°c
Equilibrium temperature θf =?
Applying the principle of conservation of heat energy, heat loss by copper equal heat gained by aluminum calorimeter and water
McCc(θc-θf) =(MaCa+MwCw)(θf-θ1)
Substituting our data into the expression we have
235*390(255-θf)=
(135*900+825*4186)(θf-16)
91650(255-θf)=(3574950)(θf-16)
23.37*10^6-91650*θf=3.57*10^6θf- +57.2*10^6
Collecting like terms and rearranging
23.37*10^6+57.2*10^6=3.57*10^6θf+91650θf
8.2*10^6=3.66*10^6θf
θf=80.5*10^6/3.6*10^6
θf =21.97°c
Answer:
2n t = m λ₀
, R = 0.240 mm
Explanation:
The interference by regency in thin films uses two rays mainly the one reflected on the surface and the one reflected on the inside of the film.
The ray that is reflected in the upper part of the film has a phase change of 180º since the ray stops from a medium with a low refractive index to one with a higher regrading index,
-This phase change is the introduction of a λ/2 change
-The ray passing through the film has a change in wavelength due to the refractive index of the medium
λ₀ = λ / n
Therefore Taking into account this fact the destructive interference expression introduces an integer phase change, then the extra distance 2t is
2 t = (m’+ ½ + ½) λ₀ / n
2t = (m’+1) λ₀ / n
m = m’+ 1
2n t = m λ₀
With m = 0, 1, 2, ...
Where t is the thickness of the film, n the refractive index of the medium, λ the wavelength
The thickness of a hair is the thickness of the film t
2R = t
R = t / 2
R = 0480/2
R = 0.240 mm
Answer:
a = 0.16
Explanation:
given,
mass of the object 1 = 0.2 kg
mass of the object 2 = 0.3 kg
acceleration when force is on 0.2 kg = 0.4 m/s²
acceleration when both mass are combine = ?
F = m a
F = 0.2 × 0.4
F = 0.08 N
force acting is same and total mass = 0.2 + 0.3 = 0.5 Kg
F = m a


a = 0.16 m/s²
the acceleration acting when both the body is attached is a = 0.16