Answer:
2666 kg
0.11567 m/s²
Explanation:
m = Mass of boat
a = Acceleration of boat
From Newton's second law
Force

Force on the first boat is 333.25 N

Hence, mass of the second boat is 2666 kg
Combined mass = 2666+215 = 2881 kg

The acceleration on the combined mass is 0.11567 m/s²
This question is incomplete, the complete question is;
The Figure shows a container that is sealed at the top by a moveable piston, Inside the container is an ideal gas at 1.00 atm. 20.0°C and 1.00 L.
"What will the pressure inside the container become if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant?"
Answer:
the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant
Explanation:
Given that;
P₁ = 1.00 atm
P₂ = ?
V₁ = 1 L
V₂ = 1.60 L
the temperature of the gas is kept constant
we know that;
P₁V₁ = P₂V₂
so we substitute
1 × 1 = P₂ × 1.60
P₂ = 1 / 1.60
P₂ = 0.625 atm
Therefore the pressure inside the container become 0.625 atm if the piston is moved to the 1.60 L mark while the temperature of the gas is kept constant
As he lifts the sack to his chest from the floor
Answer:
44 N/m
Explanation:
The extension, e, of the spring = 2.9 m - 1.4 m = 1.5 m
The work needed to stretch a spring by <em>e</em> is given by

where <em>k</em> is spring constant.

Using the appropriate values,

The value for the slope is <span>M=1.13</span>