answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
2 years ago
14

somewhere between the earth and the moon is a point where the gravitational attraction of the earth is canceled by the gravitati

onal pull of the moon. the mass of the moon is 1/81 that of the earth. how far from the center of the earth is this point?
Physics
1 answer:
mote1985 [20]2 years ago
8 0
<span>It's pretty easy problem once you set it up.

Earth------------P--------------Moon

"P" is where the gravitational forces from both bodies are acting equally on a mass m

Let's define a few distances.
Rep = distance from center of earth to P
Rpm = distance from P to center of moon
Rem = distance from center of earth to center of moon

You are correct to use that equation. If the gravitational forces are equal then

GMearth*m/Rep² = Gm*Mmoon/Rpm²

Mearth/Mmoon = Rep² / Rpm²

Since Rep is what you're looking for we can't touch that. We can however rewrite Rpm to be

Rpm = Rem - Rep

Mearth / Mmoon = Rep² / (Rem - Rep)²

Since Mmoon = 1/81 * Mearth
81 = Rep² / (Rem - Rep)²

Everything is done now. The most complicated part now is the algebra, so bear with me as we solve for Rep. I may skip some obvious or too-long-to-type steps.

81*(Rem - Rep)² = Rep²
81*Rep² - 162*Rem*Rep + 81*Rem² = Rep²
80*Rep² - 162*Rem*Rep + 81*Rem² = 0

We use the quadratic formula to solve for Rep:
Rep = (81/80)*Rem ± (9/80)*Rem
Rep = (9/8)*Rem and (9/10)*Rem

Obviously, point P cannot be 9/8 of the way to the moon because it'll be beyond the moon. Therefore, the logical answer would be 9/10 the way to the moon or B.

Edit: The great thing about this idealized 2-body problem, James, is that it is disguised as a problem where you need to know a lot of values but in reality, a lot of them cancel out once you do the math. Funny thing is, I never saw this problem in physics during Freshman year. I saw it orbital mechanics in my junior year in Aerospace Engineering. </span> sylent_reality · 8 years ago
You might be interested in
Consider a steel guitar string of initial length l=1.00m and cross-sectional area a=0.500mm2. the young's modulus of the steel i
laiz [17]
L = 1.00 m, the original length
A = 0.5 mm² = 0.5 x 10⁻⁶ m², the cross sectional area
E = 2.0 x 10¹¹ n/m², Young's modulus
P = 1500 N, the applied tension

Calculate the stress.
σ = P/A = (1500 N)/(0.5 x 10⁻⁶ m²) = 3 x 10⁹ N/m²

Let δ =  the stretch of the string.
Then the strain is
ε = δ/L

By definition, the strain is
ε = σ/E = (3 x 10⁹ N/m²)/(2 x 10¹¹ N/m²) = 0.015
Therefore
δ/(1 m) = 0.015
δ = 0.015 m = 15 mm

Answer:  15 mm
4 0
2 years ago
Sea breezes that occur near the shore are attributed to a difference between land and water with respect to what property?
ddd [48]

Answer:

a. mass density

Explanation:

<em>Land and sea breeze that occur near the shore are due to the variation of mass density of air with change in temperature.</em>

  • When the air gets heated it becomes rarer in density and thus rises up in the atmosphere and its space is occupied by a cooler and denser air that flows to the place.

<em>During the day the land is warmer than the sea so the sea breeze blows and during the night the water bodies are warmer than the land so the land breeze blows.</em>

7 0
2 years ago
A certain alarm clock ticks four times each second, with each tick representing half a period. The balance wheel consists of a t
Semenov [28]

Answer:

a. I=2.77x10^{-8} kg*m^2

b. K=4.37 x10^{-6} N*m

Explanation:

The inertia can be find using

a.

I = m*r^2

m = 0.95 g * \frac{1 kg}{1000g}=9.5x10^{-4} kg

r=0.54 cm * \frac{1m}{100cm} =5.4x10^{-3}m

I = 9.5x10^{-4}kg*(5.4x10^{-3}m)^2

I=2.77x10^{-8} kg*m^2

now to find the torsion constant can use knowing the period of the balance

b.

T=0.5 s

T=2\pi *\sqrt{\frac{I}{K}}

Solve to K'

K = \frac{4\pi^2* I}{T^2}=\frac{4\pi^2*2.7702 kg*m^2}{(0.5s)^2}

K=4.37 x10^{-6} N*m

3 0
1 year ago
Your latest invention is a car alarm that produces sound at a particularly annoying frequency of 3600 Hz . To do this, the car a
Alex17521 [72]

Answer:

The capacitance and the inductance can choose for a car-alarm circuit are

C = 215.27 μF

L = 9.078 μH

Explanation:

V =12.0 V, E = 1.55*10^2 J, f = 3600 Hz

To determine the capacitance can use the equation

U_c= \frac{1}{2}*C*V^2

Solve to C'

C = \frac{U_c*2}{V^2}=\frac{1.55x10^2J*2}{12.0^2V}

C=215.27 uF

To find the inductance can use the frequency of the circuit

f = \frac{1}{2\pi* \sqrt{C*L} }

Solve to L'

L = \frac{1}{4\pi^2*f^2*C}=\frac{1}{4\pi^2*3600^2*215.27 uF}}

L = 9.078 uH

6 0
1 year ago
An inventive child named Nick wants to reach an apple in a tree without climbing the tree. Sitting in a chair connected to a rop
Oduvanchick [21]

UHHH WHAT? I DONT GET THAT AT ALLOW

5 0
2 years ago
Other questions:
  • During action potential, the electrical charge inside the neuron is __________ the electrical charge outside the neuron.
    9·2 answers
  • Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?
    14·2 answers
  • The amplitude of a lightly damped harmonic oscillator decreases from 60.0 cm to 40.0 cm in 10.0 s. What will be the amplitude of
    5·1 answer
  • A bird has a mass of 0.8 kg and flies at a speed of 11.2 m/s. How much kinetic energy does the bird have?
    5·2 answers
  • A ball is dropped from a cliff and falls a distance of 20 m to the ground. Determine the velocity it hits the ground at and the
    14·1 answer
  • A ball on the end of a rope is moving in a vertical circle near the surface of the earth. Point A is at the top of the circle; C
    10·1 answer
  • Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
    10·1 answer
  • A 2.5 m -long wire carries a current of 8.0 A and is immersed within a uniform magnetic field B⃗ . When this wire lies along the
    11·1 answer
  • Shows an object suspended from two ropes. The weight of the object is 360 N. The magnitude of the tension
    11·1 answer
  • A water-skier with weight Fg = mg moves to the right with acceleration a. A horizontal tension force T is exerted on the skier b
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!