Answer:
2.5 m
Explanation:
Weight of billboard worker = 800 N
Number of ropes = 2
Length of scaffold = 4 m
Weight of scaffold = 500 N
Tension in rope = 550 N
The sum of the torques will be

The position of the person will be 2.5 m
<span>Discharge is the volume of water moving down a stream or river per unit of time, commonly expressed in cubic feet per second or gallons per day. In general, river discharge is computed by multiplying the area of water in a channel cross section by the average velocity of the water in that cross section: discharge = area * velocity. In this case, the answer is 0.2 m/s.</span>
Answer: 80m
Explanation:
Distance of balloon to the ground is 3150m
Let the distance of Menin's pocket to the ground be x
Let the distance between Menin's pocket to the balloon be y
Hence, x=3150-y------1
Using the equation of motion,
V^2= U^s + 2gs--------2
U= initial speed is 0m/s
g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s
40m/s is contant since U (the coin is at rest is 0) hence V =40m/s
Slotting our values into equation 2
40^2= 0^2 + 2 * 10* (3150-y)
1600 = 0 + 63000 - 20y
1600 - 63000 = - 20y
-61400 = - 20y minus cancel out minus on both sides of the equation
61400 = 20y
Hence y = 61400/20
3070m
Hence, recall equation 1
x = 3150 - 3070
80m
I hope this solve the problem.
The glass which has the greatest liquid pressure
at the bottom is all 3 have equal non-zero pressure at the bottom. The
correct answer between all the choices given is the first choice or letter A. I
am hoping that this answer has satisfied your query about and it will be able
to help you.
Answer:
7500 m
Explanation:
The radar emits an electromagnetic wave that travels towards the object and then it is reflected back to the radar.
We can call L the distance between the radar and the object; this means that the electromagnetic wave travels twice this distance, so
d = 2L
In a time of

Electromagnetic waves travel in a vacuum at the speed of light, which is equal to

Since the electromagnetic wave travels with constant speed, we can use the equation for uniform motion ,so:
(1)
where


, where L is the distance between the radar and the object
Re-arranging eq(1) and substituting, we find L:
