answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blondinia [14]
2 years ago
6

When a particle is a distance r from the origin, its potential energy function is given by the equation U(r)=kr, where k is a co

nstant and r=x2+y2+z2−−−−−−−−−−√
(a) What are the SI units of k?

Part B (b) Find a mathematical expression in terms of x, y, and z for the y component of the force on the particle.

Part C (c) If U=3.00 J when the particle is 2.00 m from the origin, find the numerical value of the y component of the force on this particle when it is at the point (-1.00 m, 2.00 m, 3.00 m).

Physics
1 answer:
Reika [66]2 years ago
5 0

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

You might be interested in
Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 36.5 cm while travelin
tia_tia [17]

Answer:

f=8.219*10^{8}Hz

Explanation:

We are going to use the formula  v=fλ

Where v= velocity of radio waves

f= frequency

λ= wavelength of wave

  • radio waves are electromagnetic waves and as such they have the speed of light which is 3*10^{8}m/s.
  • also when a wave travels from one medium to another, the wavelength changes while the frequency remains the same.
  • calculating for the frequency of the wave in air also gives us the frequency in the window glass.

f=\frac{v}{λ}

v=3*10^{8}m/s.

λ=36.5 cm = 36.5/100= 0.365m

f=\frac{3*10^{8}m/s.}{0.365m}

f=8.219*10^{8}Hz

7 0
2 years ago
|| Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r
Otrada [13]

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.

Newton's second law is defined as

F = ma

Where,

m = mass

a = acceleration

From this equation we can figure the acceleration out, then

a = \frac{F}{m}

a = \frac{11*10^3}{80}

a = 137.5m/s

From the cinematic equations of motion we know that

v_f^2-v_i^2 = 2ax

Where,

v_f =Final velocity

v_i =Initial velocity

a = acceleration

x = displacement

There is not Final velocity and the acceleration is equal to the gravity, then

v_f^2-v_i^2 = 2ax

0-v_i^2 = 2(-g)x

v_i =\sqrt{2gx}

v_i = \sqrt{2*9.8*4.8}

v_i = 9.69m/s

From the equation of motion where acceleration is equal to the velocity in function of time we have

a = \frac{v_i}{t}

t = \frac{v_i}{a}

t =\frac{9.69}{137.5}

t = 0.0705s

Therefore the time required is 0.0705s

4 0
2 years ago
Read 2 more answers
The heat capacity of an object depends in part on its ____.
nikdorinn [45]
If I remember it correctly, heat capacity is inversely proportional to mass so the answer is:
The heat capacity of an object depends in part on its a. mass
7 0
2 years ago
The wavelength of light is 5000 angstrom. Express it in nm and m.
Ierofanga [76]

Answer:

1 angstrom = 0.1nm

5000 angstrom = 5000/1 × 0.1nm

<h3>= 500nm</h3>

1 \:  angstrom = 1 \times  {10}^{ - 10} m

5000 angstrom = 5000 × 1 × 10^-10

<h3>= 5 × 10^-7 m</h3>

Hope this helps you

7 0
2 years ago
In a semiclassical model of the hydrogen atom, the electron orbits the proton at a distance of 0.053 nm. Part A What is the elec
Bezzdna [24]

Answer with Explanation:

We are given that

r=0.053 nm=0.053\times 10^{-9} m

1 nm=10^{-9} m

Charge on proton,q=1.6\times 10^{-19} C

a.We have to find the electric  potential of the proton at the position of the electron.

We know that the electric potential

V=\frac{kq}{r}

Where k=9\times 10^9

V=\frac{9\times 10^9\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}

V=27.17 V

B.Potential energy of electron,U=\frac{kq_e q_p}{r}

Where

q_e=-1.6\times 10^{-19} c=Charge on electron

q_p=q=1.6\times 10^{-19} C=Charge on proton

Using the formula

U=\frac{9\times 10^9\times (-1.6\times 10^{-19}\times 1.6\times 10^{-19}}{0.053\times 10^{-9}}

U=-4.35\times 10^{-18} J

8 0
2 years ago
Other questions:
  • A Federation starship (8.5 ✕ 106 kg) uses its tractor beam to pull a shuttlecraft (1.0 ✕ 104 kg) aboard from a distance of 14 km
    10·1 answer
  • A battleship simultaneously fires two shells toward two identical enemy ships. One shell hits ship A, which is close by, and the
    11·1 answer
  • Some car manufacturers claim that their vehicles could climb a slope of 42 ∘. For this to be possible, what must be the minimum
    9·1 answer
  • A construction worker pushes a crate horizontally on a frictionless floor with a net force of 10\, \text 10N, start text, N, end
    15·1 answer
  • Imagine two people standing at placemark A and placemark E, looking at each other across the fault. Which of the following state
    7·1 answer
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • A very long uniform line of charge has charge per unit length λ1 = 4.80 μC/m and lies along the x-axis. A second long uniform li
    14·1 answer
  • Find the magnitude of the magnetic field ∣∣B⃗ (r)∣∣ inside the cylindrical resistor, where r is the distance from the axis of th
    13·1 answer
  • Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the trucks is 3.00 × 10-5 N. One pickup truck is
    9·1 answer
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!