Answer:
428.59 N
Explanation:
Buoyant force,
where V is volume, g is gravitational constant and \rho is density
where
is upward force


where
is the density of hippo

Using g as 9.81

Therefore, the upward force=428.59 N
Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
The kinetic energy of any moving object is
(1/2) (mass) (speed²) .
For the object you described, that's
(1/2) (100 kg) (12.5 m/s)²
= (50 kg) (156.25 m²/s²)
= 7,812.5 joules
______________________________
Your attachment is way out of focus, and impossible to read.
<u>Given that</u>
mass (m) = 1300 Kg ,
height (h) = 1500 m
Determine the potential energy ?
P.E = m × g × h
= 1300 × 9.81 × 1500
= 19129500 Joules
= 19129.5 KJ