Answer:
4.41 W
Explanation:
P = IV, V = IR
P = V² / R
Given that P = 0.0625 when V = 1.50:
0.0625 = (1.50)² / R
R = 36
So the resistor is 36Ω.
When the voltage is 12.6, the power consumption is:
P = (12.6)² / 36
P = 4.41
So the power consumption is 4.41 W.
Humans can see wavelengths in the visible part of the electromagnetic spectrum. That is the range of approximately 400 - 700 nm. Honeybees can see visible light and about 100 nm more in the ultraviolet part of the electromagnetic spectrum. That is approximately 300 - 700 nm.
Answer:
a) 1.2*10^-7 m
b) 1.0*10^-7 m
c) 9.7*10^-8 m
d) ultraviolet region
Explanation:
To find the different wavelengths you use the following formula:

RH: Rydberg constant = 1.097 x 10^7 m^−1.
(a) n=2

(b)

(c)

(d) The three lines belong to the ultraviolet region.
Answer:
1. False 2) greater than. 3) less than 4) less than
Explanation:
1)
- As the collision is perfectly elastic, kinetic energy must be conserved.
- The expression for the final velocity of the mass m₁, for a perfectly elastic collision, is as follows:

- As it can be seen, as m₁ ≠ m₂, v₁f ≠ 0.
2)
- As total momentum must be conserved, we can see that as m₂ > m₁, from the equation above the final momentum of m₁ has an opposite sign to the initial one, so the momentum of m₂ must be greater than the initial momentum of m₁, to keep both sides of the equation balanced.
3)
- The maximum energy stored in the in the spring is given by the following expression:

- where A = maximum compression of the spring.
- This energy is always the sum of the elastic potential energy and the kinetic energy of the mass (in absence of friction).
- When the spring is in a relaxed state, the speed of the mass is maximum, so, its kinetic energy is maximum too.
- Just prior to compress the spring, this kinetic energy is the kinetic energy of m₂, immediately after the collision.
- As total kinetic energy must be conserved, the following condition must be met:
- So, it is clear that KE₂f < KE₁₀
- Therefore, the maximum energy stored in the spring is less than the initial energy in m₁.
4)
- As explained above, if total kinetic energy must be conserved:

- So as kinetic energy is always positive, KEf₂ < KE₁₀.
Answer:
The gplanet is 0.193 m/s^2
Explanation:
The speed of the pulse is:


where
m=mass of the wire=4 g= 4x10^-3 kg
M=mass of the object= 3 kg
Replacing values:
