Answer: The paper airplane will create a curved path towards the floor as it is pulled toward <u><em>Earth's center.</em></u>
Explanation: The paper airplane will be pulled to the center because <u><em>Earth has a much greater mass than objects on its surface.</em></u> And it will curve because of the amount of <u><em>force</em></u> you are putting onto the plane.
Answer:
Explanation:
Length if the bar is 1m=100cm
The tip of the bar serves as fulcrum
A force of 20N (upward) is applied at the tip of the other end. Then, the force is 100cm from the fulcrum
The crate lid is 2cm from the fulcrum, let the force (downward) acting on the crate be F.
Using moment
Sum of the moments of all forces about any point in the plane must be zero.
Let take moment about the fulcrum
100×20-F×2=0
2000-2F=0
2F=2000
Then, F=1000N
The force acting in the crate lid is 1000N
Option D is correct
Answer:
4 (please see the attached file)
Explanation:
While the angular speed (counterclockwise) remained constant, the angular acceleration was just zero.
So, the only force acting on the bug (parallel to the surface) was the centripetal force, producing a centripetal acceleration directed towards the center of the disk.
When the turntable started to spin faster and faster, this caused a change in the angular speed, represented by the appearance of an angular acceleration α.
This acceleration is related with the tangential acceleration, by this expression:
at = α*r
This acceleration, tangent to the disk (aiming in the same direction of the movement, which is counterclockwise, as showed in the pictures) adds vectorially with the centripetal force, giving a resultant like the one showed in the sketch Nº 4.
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
Answer:
The ball reaches Barney head in 
Explanation:
From the question we are told that
The rise velocity is 
The height considered is 
The horizontal velocity of the large object is 
Generally from kinematic equation

Here s is the distance of the object from Barney head ,
u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter
So

So

= 
Solving the above equation using quadratic formula
The value of t obtained is 