Answer:
Explanation:
Given
Minute hand length =16 cm
Time at a quarter after the hour to half past i.e. 1 hr 45 min
Angle covered by minute hand in 1 hr is 360 and in 45 minutes 270


(c)For the next half hour
Effectively it has covered 2 revolution and a quarter

angle turned 
(f)Hour after that
After an hour it again comes back to its original position thus displacement is same =25.136
Angle turned will also be same i.e. 
Answer:
r = 0.114 m
Explanation:
To find the speed of the proton, from conservation of energy, we know that
KE = PE
Thus, we have;
(1/2)mv² = qV
Where;
V is potential difference = 1kv = 1000V
q is charge on proton which has a value of 1.6 x 10^(-19) C
m is mass of proton with a constant value of 1.67 x 10^(-27) kg
Let's make the velocity v the subject;
v =√(2qV/m)
v = √(2•1.6 x 10^(-19)•1000)/(1.67 x 10^(-27))
v = 4.377 x 10^(5) m/s
Now to calculate the radius of the circular motion of charge we know that;
F = mv²/r = qvB
Thus, mv²/r = qvB
Divide both sides by v;
mv/r = qB
Thus, r = mv/qB
Value of B from question is 0.04T
Thus,
r = (1.67 x 10^(-27) x 4.377 x 10^(5))/(1.6 x 10^(-19) x 0.04)
r = 0.114 m
r = 8.76 m
Answer:
The amount of heat required is 
Explanation:
From the question we are told that
The mass of water is 
The temperature of the water before drinking is 
The temperature of the body is 
Generally the amount of heat required to move the water from its former temperature to the body temperature is

Here
is the specific heat of water with value
So

=>
Generally the no of mole of sweat present mass of water is

Here
is the molar mass of sweat with value
=> 
=> 
Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

Here
is the latent heat of vaporization with value 
=> 
=> 
Generally the overall amount of heat energy required is

=> 
=> 
Question
Initially, the baton is spinning about a line through its center at angular velocity 3.00 rad/s. What is its angular momentum? Express your answer in kilogram meters squared per second.
Answer:

Explanation:
The angular momentum L of the baton moving about an axis perpendicular to it, passing through the center of the baton is,

Here, l is the length of the baton.
Substitute 0.120 kg for m, 3 rads/s for ![\omega[\tex] and 0.8 m for l [tex]\begin{array}{c}\\L = \frac{1}{{12}}m{l^2}\omega \\\\ = \frac{1}{{12}}\left( {0.120{\rm{ kg}}} \right){\left( {{\rm{80}}{\rm{.0 cm}}} \right)^2}{\left( {\frac{{1 \times {{10}^{ - 2}}{\rm{m}}}}{{1{\rm{ cm}}}}} \right)^2}\left( {{\rm{3}}{\rm{.00 rad/s}}} \right)\\\\ = 0.0192{\rm{ kg}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/s}}\\\end{array}](https://tex.z-dn.net/?f=%5Comega%5B%5Ctex%5D%20and%200.8%20m%20for%20l%20%5Btex%5D%5Cbegin%7Barray%7D%7Bc%7D%5C%5CL%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7Dm%7Bl%5E2%7D%5Comega%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7D%5Cleft%28%20%7B0.120%7B%5Crm%7B%20kg%7D%7D%7D%20%5Cright%29%7B%5Cleft%28%20%7B%7B%5Crm%7B80%7D%7D%7B%5Crm%7B.0%20cm%7D%7D%7D%20%5Cright%29%5E2%7D%7B%5Cleft%28%20%7B%5Cfrac%7B%7B1%20%5Ctimes%20%7B%7B10%7D%5E%7B%20-%202%7D%7D%7B%5Crm%7Bm%7D%7D%7D%7D%7B%7B1%7B%5Crm%7B%20cm%7D%7D%7D%7D%7D%20%5Cright%29%5E2%7D%5Cleft%28%20%7B%7B%5Crm%7B3%7D%7D%7B%5Crm%7B.00%20rad%2Fs%7D%7D%7D%20%5Cright%29%5C%5C%5C%5C%20%3D%200.0192%7B%5Crm%7B%20kg%7D%7D%20%5Ccdot%20%7B%7B%5Crm%7Bm%7D%7D%5E%7B%5Crm%7B2%7D%7D%7D%7B%5Crm%7B%2Fs%7D%7D%5C%5C%5Cend%7Barray%7D)
Answer:
It will take 4 sec rock to comes its original point
Explanation:
It is given that the rock comes to its original point
So displacement S = 0 m
Initial velocity u = 19.6 m/sec
Acceleration due to gravity 
According to second equation of motion 


t = 4 sec