answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sertanlavr [38]
2 years ago
13

A majorette in a parade is performing some acrobatic twirlings of her baton. Assume that the baton is a uniform rod of mass 0.12

0 kg and length 80.0 cm .

Physics
2 answers:
den301095 [7]2 years ago
5 0

Question

Initially, the baton is spinning about a line through its center at angular velocity 3.00 rad/s.  What is its angular momentum? Express your answer in kilogram meters squared per second.

Answer:

0.0192 kgm^{2}/s

Explanation:

The angular momentum L of the baton moving about an axis perpendicular to it, passing through the center of the baton is,

L = \frac{1}{{12}}m{l^2}\omega

Here, l is the length of the baton.

Substitute 0.120 kg for m, 3 rads/s for \omega[\tex] and 0.8 m for l [tex]\begin{array}{c}\\L = \frac{1}{{12}}m{l^2}\omega \\\\ = \frac{1}{{12}}\left( {0.120{\rm{ kg}}} \right){\left( {{\rm{80}}{\rm{.0 cm}}} \right)^2}{\left( {\frac{{1 \times {{10}^{ - 2}}{\rm{m}}}}{{1{\rm{ cm}}}}} \right)^2}\left( {{\rm{3}}{\rm{.00 rad/s}}} \right)\\\\ = 0.0192{\rm{ kg}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/s}}\\\end{array}

maw [93]2 years ago
4 0

Its angular momentum is 0.0192 kg.m²/s

\texttt{ }

<h3>Further explanation</h3>

<u><em>Complete Question:</em></u>

<em>A majorette in a parade is performing some acrobatic twirlings of her baton. Assume that the baton is a uniform rod of mass 0.120 kg and length 80.0 cm. Initially, the baton is spinning about a line through its center at angular velocity 3.00 rad/s. What is its angular momentum? Express your answer in kilogram meters squared per second</em>

<u>Given:</u>

mass of the baton = m = 0.120 kg

length of the baton = R = 80.0 cm = 0.8 m

angular velocity = ω = 3.00 rad/s

<u>Asked:</u>

angular momentum = L = ?

<u>Solution:</u>

L = I \times \omega

L = ( \frac{1}{12} m R^2 ) \omega

L = \frac{1}{12} m \omega R^2

L = \frac{1}{12} \times 0.120 \times 3.00 \times 0.8^2

L = \frac{12}{625}

L \approx 0.0192 \texttt{ kgm}^2\texttt{/s}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Circular Motion

\texttt{ }

Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant

You might be interested in
Adam observed properties of four different waves and recorded observations about the frequency and volume of each one in his cha
butalik [34]
I believe this answer is B but my believing sucks so
3 0
2 years ago
If a force of 26 N is exerted on two balls, one with a mass of 0.52 kg and the other with a mass of 0.78 kg, the ball with the m
gogolik [260]
False is the correct answer
6 0
2 years ago
How does increasing the distance between charged objects affect the electric force between them? the electric force increases be
konstantin123 [22]

the electric force decreases because the distance has an indirect relationship to the force

Explanation:

The electric force between two objects is given by

F=k \frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1 and q2 are the charges of the two objects

r is the distance between the two objects

As we can see from the formula, the magnitude of the force is inversely proportional to the square of the distance: so, when the distance between the object increases, the magnitude of the force decreases.

3 0
2 years ago
Read 2 more answers
Richard needs to fly from san diego to halifax, nova scotia and back in order to give an important talk about mathematics. on th
kondor19780726 [428]

When plane is going towards Halifax the speed of wind is in the direction of fly

so overall the net speed of the plane will increase

while when he is on the way back the air is opposite to flight so net speed will decrease

now the total time of the journey is 13 hours

out of this 2 hours he spent in mathematics talk

so total time of the fly is 13 - 2 = 11 hours

now we have formula to find the time to travel to Halinex

t_1 = \frac{d}{v + 50}

time taken to reach back

t_2 = \frac{d}{v - 50}

now we have total time

T = t_1 + t_2

11 = \frac{d}{v - 50} + \frac{d}{v + 50}

here d= 3000 miles

11 = \frac{3000}{v - 50} + \frac{3000}{v + 50}

3.67 * 10^{-3} = \frac{2v}{v^2 - 2500}

v^2 - 2500 = 545.45v

solving above quadratic equation we will have

v = 550 mph

so speed of plane will be 550 mph

3 0
2 years ago
Read 2 more answers
A battleship launches a shell horizontally at 100 m/s from the ship’s deck that’s 50 m above the water. The shell is intended to
Annette [7]

Answer:

The shell will land 10.18m away from the buoy.

Explanation:

In order to solve this problem, we must first do a sketch of what the problem looks like (see attached picture).

Now, there are two cases, one with the tailwind and another with the tailwind. In both cases the shell would have the same vertical initial velocity and acceleration, therefore the shell would hit the water in the same amount of time. So we need to first find the time it takes the shell to hit the water.

In order to do so we can use the following equation:

y_{f}=y_{0}+V_{0}t+\frac{1}{2}at^{2}

now, we know that the final height and the initial velocity are to be zero, so we can simplify the equation like this:

0=y_{0}+\frac{1}{2}at^{2}

and solve for t:

t=\sqrt{\frac{-2y_0}{a}}

now we can substitute the values:

t=\sqrt{\frac{-2(50m)}{-9.81m/t^2}}

t=3.19s

Since it takes 3.19s for the shell to hit the water, that's the amount of time it spends flying horizontally.

So we can consider the shell to move at a constant speed if there was no tailwind, so we can find the  distance from the ship to point A to be:

x_{A}=V_{x}t

x_{A}=(100m/s)(3.19)

x_{A}=319m

We can now find the distance between the ship to point B, which is the point the ball falls due to the tailwind. Since the movement will be accelerated in this scenario, we can find the distance by using the following formula:

x_{f}=V_{x0}t+\frac{1}{2}a_{x}t^{2}

So we can substitute the given values:

x_{f}=(100m/s)(3.19s)+\frac{1}{2}(2m/s^{2})(3.19s)^{2}

Which yields:

x_{f}=329.18m

so now we can use the A and B points to find by how far the shell missed the buoy:

Distance=329.18m-319m=10.18m

So the shell missed the buoy by 10.18m.

8 0
2 years ago
Other questions:
  • A small 175-g ball on the end of a light string is revolving uniformly on a frictionless surface in a horizontal circle of diame
    11·2 answers
  • Platinum (pt) has the fcc crystal structure, an atomic radius of 0.1387 nm, and an atomic weight of 195.08 g/mol. what is its th
    15·2 answers
  • Consider a sign suspended on a boom that is supported by a cable, as shown. What is the proper equation to use for finding the n
    5·2 answers
  • A baseball player is running to second base at 5.03 m/s. when he is 4.80 m from the plate he goes into a slide. the coefficient
    10·2 answers
  • Marcia is given an incomplete chemical equation that includes the number of nitrogen atoms present in the products of the reacti
    5·2 answers
  • A 4.0 Ω resistor, an 8.0 Ω resistor, and a 12.0 Ω resistor are connected in parallel across a 24.0 V battery. What is the equiva
    14·2 answers
  • 40-turn circular coil (radius = 4.0 cm, total resistance = 0.20 ) is placed in a uniform magnetic field directed perpendicular
    5·1 answer
  • As a 15000 kg jet plane lands on an aircraft carrier, its tail hook snags a cable to slow it down. The cable is attached to a sp
    14·1 answer
  • 01 – (Valor – 2,0) O maior campo de testes de veículos da América Latina, localizado na cidade de Indaiatuba (SP), tem forma cir
    15·1 answer
  • Below are four statements about acceleration. Which statement is not correct? A Acceleration always involves changing speed. B C
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!