answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
2 years ago
6

If the ball is 0.60 mm from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a

measure of how much the ball is speeding up. Express your answer in m/s2 and in units of g
Physics
1 answer:
PolarNik [594]2 years ago
8 0

This question is incomplete, the complete question is;

In a softball windmill pitch, the pitcher rotates her arm through just over half a circle, bringing the ball from a point above her shoulder and slightly forward to a release point below her shoulder and slightly forward. (Figure 1) shows smoothed data for the angular velocity of the upper arm of a college softball pitcher doing a windmill pitch; at time t = 0 her arm is vertical and already in motion. For the first 0.15 s there is a steady increase in speed, leading to a final push with a greater acceleration during the final 0.05 s before the release. In each part of the problem, determine the corresponding quantity during the first 0.15 s of the pitch.

Angular Velocity at time 0s = 12 rad/s

Angular Velocity at time 0.15s = 24 rad/s

a) What is the angular acceleration?

b) If the ball is 0.60 m from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a measure of how much the ball is speeding up. Express your answer in m/s2 and in units of g

Answer:

a) the angular acceleration is 80 rad/s²

b) the tangential acceleration of the ball is;

- a = 48 m/s²

- a = 4.9 g

Explanation:

Given the data in the question;

from the graph below;

Angular Velocity at time 0s w_o = 12 rad/s

Angular Velocity at time 0.15s w_f = 24 rad/s

a) What is the angular acceleration;

Angular acceleration ∝ = ( w_f - w_o ) / dt

we substitute

Angular acceleration ∝ = ( 24 - 12 ) / 0.15

Angular acceleration ∝ = 12 / 0.15

Angular acceleration ∝ = 80 rad/s²

Therefore, the angular acceleration is 80 rad/s²

b)

If the ball is 0.60 m from her shoulder, i.e s = 0.6 m

the tangential acceleration of the ball will be;

a = ∝ × s

we substitute

a = 80 × 0.6

a = 48 m/s²

a = ( 48 / 9.8 )g

a = 4.9 g

Therefore, the tangential acceleration of the ball is;

- a = 48 m/s²

- a = 4.9 g

You might be interested in
A roller coaster, traveling with an initial speed of 15 meters per second, decelerates uniformly at â7.0 meters per second2 to a
Harrizon [31]
<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a. Thus, d = [(0^2)-(15^2)]/(2*-7) d = [0-(225)]/(-14) d = 225/14 d = 16.0714 m With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
8 0
2 years ago
Among the largest passenger ships currently in use, the Norway has been in service the longest. The Norway is more than 300 m lo
LenaWriter [7]

Answer:

6.33\times 10^8\ kg\cdot m/s

Explanation:

Mass of the ship (m) = 6.9 × 10⁷ kg

Speed of the ship (v) = 33 km/h

First, let us convert the speed from km/h to m/s using the conversion factor.

We know that, 1 km/h = 5/18 m/s

So, 33 km/h = 33\times \frac{5}{18}=9.17\ m/s

Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.

So, here, length of the ship doesn't play any role in the determination of the momentum.

Magnitude of momentum of the ship = Mass × Speed

                                                             = (6.9\times 10^7\ kg)(9.17\ m/s)

                                                             = 6.33\times 10^8\ kg\cdot m/s

Therefore, the magnitude of ship's momentum is 6.33\times 10^8\ kg\cdot m/s.

6 0
2 years ago
You slip a wrench over a bolt. Taking the origin at the bolt, the other end of the wrench is at x=18cm, y=5.5cm. You apply a for
mart [117]

Answer:

The torque on the wrench is 4.188 Nm

Explanation:

Let r = xi + yj where is the distance of the applied force to the origin.

Since x = 18 cm = 0.18 cm and y = 5.5 cm = 0.055 cm,

r = 0.18i + 0.055j

The applied force f = 88i - 23j

The torque τ = r × F

So, τ = r × F = (0.18i + 0.055j) × (88i - 23j) = 0.18i × 88i + 0.18i × -23j + 0.055j × 88i + 0.055j × -23j

= (0.18 × 88)i × i + (0.18 × -23)i × j + (0.055 × 88)j × i + (0.055 × -22)j × j  

= (0.18 × 88) × 0 + (0.18 × -23) × k + (0.055 × 88) × (-k) + (0.055 × -22) × 0   since i × i = 0, j × j = 0, i × j = k and j × i = -k

= 0 - 4.14k + 0.0484(-k) + 0

= -4.14k - 0.0484k

= -4.1884k Nm

≅ -4.188k Nm

So, the torque on the wrench is 4.188 Nm

8 0
2 years ago
The leaves of a tree lose water to the atmosphere via the process of transpiration. A particular tree loses water at the rate of
Gnoma [55]

Answer:

The speed of the sap flowing in the vessel is 1.90 mm/s

Explanation:

Given:

The rate of water loss, Q = 3 × 10 ⁻⁸ m³/s

Number of vessels contained, n = 2000

Diameter of the vessel, D = 100 Mu m

thus, the radius of the vessel, r = 50 × 10⁻⁶ m

Now, the rate of flow is given as:

Q = AV    .............(1)

where, A is the area of the cross-section

V is the velocity

Total area, A = n × (πr²)

substituting the values in the equation (1), we get

3 × 10 ⁻⁸ m³/s = [2000 × (π × (50 × 10⁻⁶)²)] × V

or

V = 1.909 × 10⁻³ m/s or 1.90 mm/s

Hence, the speed of the sap flowing in the vessel is 1.90 mm/s

7 0
2 years ago
A hockey puck slides off the edge of a table with an initial velocity of 23.2 m/s and experiences no air resistance. The height
Dennis_Churaev [7]

Answer:

15.1°

Explanation:

The horizontal velocity of the hockey puck is constant during the motion, since there are no forces acting along this direction:

v_x = 23.2 m/s

Instead, the vertical velocity changes, due to the presence of the acceleration due to gravity:

v_y(t)= v_{y0} -gt (1)

where

v_{y0}=0 is the initial vertical velocity

g = 9.8 m/s^2 is the gravitational acceleration

t is the time

Since the hockey puck falls from a height of h=2.00 m, the time it needs to reach the ground is given by

h=\frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(2.00 m)}{9.8 m/s^2}}=0.64 s

Substituting t into (1) we find the final vertical velocity

v_y = -(9.8 m/s^2)(0.64 s)=-6.3 m/s

where the negative sign means that the velocity is downward.

Now that we have both components of the velocity, we can calculate the angle with respect to the horizontal:

tan \theta = \frac{|v_y|}{v_x}=\frac{6.3 m/s}{23.2 m/s}=0.272\\\theta = tan^{-1} (0.272)=15.1^{\circ}

6 0
2 years ago
Other questions:
  • Explain why ice cubes formed from water of a glacier freeze at a higher temperature than ice cubes
    12·1 answer
  • Which three methods are valid for preventing further environmental damage from CO2?
    10·2 answers
  • Identify the arrows that show input force
    14·2 answers
  • Falling raindrops frequently develop electric charges. Does this create noticeable forces between the droplets? Suppose two 1.8
    6·2 answers
  • A herringbone or tire track pattern on a radiograph is a result of: _______.A. Insufficient vertical angulation B. Film bending
    5·1 answer
  • An airliner of mass 1.70×105kg1.70×105kg lands at a speed of 75.0 m/sm/s. As it travels along the runway, the combined effects o
    5·1 answer
  • The rate of change of atmospheric pressure P with respect to altitude h is proportional to P, provided that the temperature is c
    11·1 answer
  • A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, c
    6·2 answers
  • What is the concentration of molecular oxygen (O2) in mol/L on a June day in Toronto when atmospheric pressure is 1.0 atm and th
    15·1 answer
  • As the spaceship travels upward in the sky, some of its kinetic energy will be lost to the universe due to ?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!