answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dlinn [17]
2 years ago
11

If a 1000-pound capsule weighs only 165 pounds on the moon, how much work is done in propelling this capsule out of the moon's g

ravitational field? (Note: The radius of the moon is roughly 1080 miles)
Physics
1 answer:
yulyashka [42]2 years ago
5 0

Answer:

178200 g mile pounds

Explanation:

Work= Force * Distance= Fh

F=ma=mg where m is mass and g is acceleration due to gravity

Work= 165 pounds *g* 1080 m=  178200 g mile pounds

You might be interested in
Someone who wants to sell you a Superball claims that it will bounce to a height greater than the height from which it is droppe
sergeinik [125]

Answer:

No

Explanation:

Unless there are other external forces, this will never be true. Because according to energy conservation, potential energy will be converted to kinetic energy as the ball falls down (so it loses height and gain speed). And vice versa, kinetic to potential when it bounces back. So the potential energy after must be the same (or smaller if losing heat to external environment), so it can only get the the same height or less, but not more.

7 0
2 years ago
Brass is an alloy made from copper and zinc a 0.59 kg brass sample at 98.0 is dropped into 2.80 kg of water at 5.0 c if the equi
zhannawk [14.2K]
The specific heat capacity of brass would be ranked between 0 and infinity
3 0
1 year ago
Read 2 more answers
A golfer hits a golf ball at an angle of 25.0° to the ground. if the golf ball covers a horizontal distance of 301.5 m, what is
kvasek [131]

<u>Answer:</u>

 Maximum height reached = 35.15 meter.

<u>Explanation:</u>

Projectile motion has two types of motion Horizontal and Vertical motion.

Vertical motion:

         We have equation of motion, v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration and t is the time taken.

         Considering upward vertical motion of projectile.

         In this case, Initial velocity = vertical component of velocity = u sin θ, acceleration = acceleration due to gravity = -g m/s^2 and final velocity = 0 m/s.

        0 = u sin θ - gt

         t = u sin θ/g

    Total time for vertical motion is two times time taken for upward vertical motion of projectile.

    So total travel time of projectile = 2u sin θ/g

Horizontal motion:

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this case Initial velocity = horizontal component of velocity = u cos θ, acceleration = 0 m/s^2 and time taken = 2u sin θ /g

 So range of projectile,  R=ucos\theta*\frac{2u sin\theta}{g} = \frac{u^2sin2\theta}{g}

 Vertical motion (Maximum height reached, H) :

     We have equation of motion, v^2=u^2+2as, where u is the initial velocity, v is the final velocity, s is the displacement and a is the acceleration.

   Initial velocity = vertical component of velocity = u sin θ, acceleration = -g, final velocity = 0 m/s at maximum height H

   0^2=(usin\theta) ^2-2gH\\ \\ H=\frac{u^2sin^2\theta}{2g}

In the give problem we have R = 301.5 m,  θ = 25° we need to find H.

So  \frac{u^2sin2\theta}{g}=301.5\\ \\ \frac{u^2sin(2*25)}{g}=301.5\\ \\ u^2=393.58g

Now we have H=\frac{u^2sin^2\theta}{2g}=\frac{393.58*g*sin^2 25}{2g}=35.15m

 So maximum height reached = 35.15 meter.

7 0
1 year ago
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
1 year ago
A solid cylinder of mass 12.0 kg and radius 0.250 m is free to rotate without friction around its central axis. If you do 75.0 J
faltersainse [42]

Answer:

20 rad/s

Explanation:

mass, m = 12 kg

radius, r = 0.250 m

Moment of inertia of cylinder, I = 1/2 mr²

I = 0.5 x 12 x 0.250 x 0.250 = 0.375 kgm^2

Work done = Change in kinetic energy

Initial K = 0

Final K = 1/2 Iω²

W = 1/2 Iω²

ω² = 2W/ I = 2 x 75 / (0.375)

ω = 20 rad/s

Thus, the final angular velocity is 20 rad/s .

8 0
1 year ago
Other questions:
  • Which of the following are linear defects?. . An edge dislocation. . A Frenkel defect. . A screw dislocation. . A Schottky defec
    6·1 answer
  • The sensory portion of the pns carries electrical signals ________ the cns; the motor portion carries electrical signals _______
    6·1 answer
  • A 4-lb ball b is traveling around in a circle of radius r1 = 3 ft with a speed (vb)1 = 6 ft&gt;s. if the attached cord is pulled
    12·1 answer
  • Marla says that only one person was really responsible for the theory of planetary motion. Do you agree with her? Why or why not
    6·2 answers
  • 1. A U.S. manufacturer wants to sell computer equipment to companies in Honduras. Because the U.S. government limits trade with
    11·1 answer
  • Which of the following statements is/are true? Check all that apply. Check all that apply. The work done by a nonconservative fo
    13·1 answer
  • a 1150 kg car is on a 8.70 hill. using x-y axis tilted down the plane, what is the x-component of the normal force(unit=N)
    13·1 answer
  • The flight of a kicked football follows the quadratic function f(x)=−0.02x2+2.2x+2, where f(x) is the vertical distance in feet
    14·1 answer
  • To measure the coefficient of kinetic friction by sliding a block down an inclined plane the block must be in equilibrium.
    15·1 answer
  • A 16 g ball at the end of a 1.4 m string is swung in a horizontal circle. It revolves once every 1.09 s. What is the magnitude o
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!