Answer:
Isothermal : P2 = ( P1V1 / V2 ) , work-done 
Adiabatic : : P2 =
, work-done =
W = 
Explanation:
initial temperature : T
Pressure : P
initial volume : V1
Final volume : V2
A) If expansion was isothermal calculate final pressure and work-done
we use the gas laws
= PIVI = P2V2
Hence : P2 = ( P1V1 / V2 )
work-done :

B) If the expansion was Adiabatic show the Final pressure and work-done
final pressure

where y = 5/3
hence : P2 = 
Work-done
W = 
Where 
Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
Answer:
a) When its length is 23 cm, the elastic potential energy of the spring is
0.18 J
b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Explanation:
Hi there!
a) The elastic potential energy (EPE) is calculated using the following equation:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretched lenght.
Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).
First, let´s convert the spring constant units into N/m:
4 N/cm · 100 cm/m = 400 N/m
EPE = 1/2 · 400 N/m · (0.03 m)²
EPE = 0.18 J
When its length is 23 cm, the elastic potential energy of the spring is 0.18 J
b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:
EPE = 1/2 · 400 N/m · (0.06 m)²
EPE = 0.72 J
When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J
Centripetal force <span>a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving. It is calculated by the expression:
F = mv^2/r
where m is the mass, v is the velocity and r is the radius.
F = 7.26(31.95)^2 / (1.215) = 6100 N</span>
Arginine is a basic aminoacid, because it has two amino groups and one acid
group.
At a low pH, every ionizable group is protoned. At a little higher pH, the
acid group looses its proton. A little higher pH, one amino group looses its
proton. At a very high pH, all ionizable groups are not protoned.
Pkas
<span>
<span><span>
<span>
pka1 = 1.82
</span>
<span>
pka2 = 8.99
</span>
<span>
pka3 = 12.48
</span>
</span>
</span></span>
So 9.20 is higher tan the second pKa and lower than the third pka. This
means the acid has already lost its proton, and one of the aminos too, but the
second amino hasn’t. When an acid is not protoned, it has a negative charge.
When an amino is not protoned, it’s neutral. When an amino is protoned, it has
a positive charge. So this amnino acid has one positive charge (one of the aminos) and one negative
charge (the acid), what makes it neutral.