answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
2 years ago
5

A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in

thermal contact. The specific heat of aluminum is more than double that of copper. Which object experiences the greater temperature change during the time the system takes to reach thermal equilibrium?
a) It is impossible to tell without knowing the volumes.
b) It is impossible to tell without knowing the masses.
c) The copper experiences a greater temperature change.
d) Neither; both objects experience the same magnitude temperature change.
e) The aluminum experiences a greater temperature change.
Physics
1 answer:
blsea [12.9K]2 years ago
4 0

Answer:

b) It is impossible to tell without knowing the masses.

Explanation:

The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

\Delta T= \frac{Q}{m C_s}

where

Q is the amount of heat

m is the mass of the substance

Cs is the specific heat capacity of the substance

In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.

You might be interested in
A series of waves with decreasing wavelength labeled radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamm
kotegsom [21]

Answer:

label A= radio waves, label C= infrared, Label D= visible Light, Label G= gamma rays.

Explanation:

hope it helped??

can i have a thanks, a 5 star, and a brainliest please

can we be friends  

6 0
2 years ago
Read 2 more answers
A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
frez [133]
 (u) = 20 m/s 
(v) = 0 m/s 
<span> (t) = 4 s 
</span>
<span>0 = 20 + a(4) 

</span><span>4 x a = -20 
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
8 0
2 years ago
Read 2 more answers
Assume that segment r exerts a force of magnitude t on segment l. what is the magnitude flr of the force exerted on segment r by
mrs_skeptik [129]
If we are talking on the force being exerted by a segment of a rope of lenght R on the right on a point M which is being also pulled from the Left by a segment of rope R  as shown in the figure attached. Then we invoke Newton's Third Law:
"Any force exerted by an object (in this case a segment of the rope) also suffers a equal and opposite force".
If we pick T_R=T whis is the tension exerted by the right segment then the left segment will also exert an equal and opposite force so we have that T_L=-T

8 0
2 years ago
A measuring cylinder contains 60cm3 of oil at 0 celcius. When a piece of ice was roped into the cylinder it sank completely in o
mariarad [96]

Answer:

S_i=\frac{9}{10} =0.9

Explanation:

Given:

  • volume of oil in the cylinder, V_o=60\ cm^2
  • volume of the oil level when the ice is immersed, V=90\ cm^3
  • the volume level of oil when the ice melted, V'=87\ cm^3

<u>Now, therefore the volume of ice:</u>

V_i=V-V_o

V_i=90-60

V_i=30\ cm^3

<u>Now the volume of water:</u>

V_w=V'-V_o

V_w=87-60

V_w=27\ cm^3

As we know that the relative density is the ratio of density of the substance to the density of water.

<u>So, the relative density of ice:</u>

S_i=\frac{\rho_i}{\rho_w} .....................(1)

as we know that density is given as:

\rm \rho=\frac{mass}{volume}

now eq. (1)

S_i=\frac{m}{V_{i}}\div  \frac{m}{V_w}

where, m = mass of the water or the ice which remains constant in any phase

S_i=\frac{V_w}{V_i}

S_i=\frac{27}{30}

S_i=\frac{9}{10} =0.9

7 0
2 years ago
Lilli suggests that they explore the simulation starting with varying only a single parameter in order to understand the role of
mrs_skeptik [129]

Answer:

B.

Explanation:

One of the ways to address this issue is through the options given by the statement. The concepts related to the continuity equation and the Bernoulli equation.

Through these two equations it is possible to observe the behavior of the fluid, specifically the velocity at a constant height.

By definition the equation of continuity is,

A_1V_1=A_2V_2

In the problem A_2 is 2A_1, then

A_1V_1=2A_1V_2

V_2 = \frac{V_1}{2}

<em>Here we can conclude that by means of the continuity when increasing the Area, a decrease will be obtained - in the diminished times in the area - in the speed.</em>

For the particular case of Bernoulli we have to

P_1 + \frac{1}{2}\rho V_1^2 = P_2 +\frac{1}{2}\rho V_2^2

P_2-P_1 = \frac{1}{2} \rho (V_1^2-V_2^2)

For the previous definition we can now replace,

P_2-P_1 = \frac{1}{2} \rho (V_1^2-(\frac{V_1}{2})^2)

\Delta P =  \frac{3}{8} \rho V_1^2

<em>Expressed from Bernoulli's equation we can identify that the greater the change that exists in pressure, fluid velocity will tend to decrease</em>

The correct answer is B: "If we increase A2 then by the continuity equation the speed of the fluid should decrease. Bernoulli's equation then shows that if the velocity of the fluid decreases (at constant height conditions) then the pressure of the fluid should increase"

4 0
2 years ago
Other questions:
  • Which sequence correctly shows how stars form?
    8·2 answers
  • A carmaker has designed a car that can reach a maximum acceleration of 12 meters/second2. The car’s mass is 1,515 kilograms. Ass
    8·1 answer
  • Astronomers have discovered several volcanoes on io, a moon of jupiter. one of them, named loki, ejects lava to a maximum height
    13·1 answer
  • For the first nutcracker, two applied forces of magnitude f were required to crack the nut, whereas for the second, only one app
    14·1 answer
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • A uniform thin circular rubber band of mass M and spring constant k has an original radius R?
    11·1 answer
  • A foam ball of mass 0.150 g carries a charge of -2.00 nC. The ball is placed inside a uniform electric field, and is suspended a
    5·1 answer
  • g A coil formed by wrapping 50 turns of wire in the shape of a square is positioned in a magnetic field so that the normal to th
    5·1 answer
  • Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what meth
    9·1 answer
  • A small town has decided to forego the use of electrical power and send energy through town via mechanical waves on ropes. They
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!