answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
2 years ago
5

A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in

thermal contact. The specific heat of aluminum is more than double that of copper. Which object experiences the greater temperature change during the time the system takes to reach thermal equilibrium?
a) It is impossible to tell without knowing the volumes.
b) It is impossible to tell without knowing the masses.
c) The copper experiences a greater temperature change.
d) Neither; both objects experience the same magnitude temperature change.
e) The aluminum experiences a greater temperature change.
Physics
1 answer:
blsea [12.9K]2 years ago
4 0

Answer:

b) It is impossible to tell without knowing the masses.

Explanation:

The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

\Delta T= \frac{Q}{m C_s}

where

Q is the amount of heat

m is the mass of the substance

Cs is the specific heat capacity of the substance

In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.

You might be interested in
A 2.70 kg cat is sitting on a windowsill. The cat is sleeping peacefully until a dog barks at him. Startled, the cat falls from
Alchen [17]

Answer:

The speed of the cat when it hits the ground is approximately 7.586 meters per second.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem, we have that initial potential gravitational energy of the cat (U_{g}), in joules, is equal to the sum of the final translational kinetic energy (K), in joules, and work losses due to air resistance (W_{l}), in joules:

U_{g} = K +W_{l} (1)

By definition of potential gravitational energy, translational kinetic energy and work, we expand the equation presented above:

m \cdot g\cdot h = \frac{1}{2}\cdot m \cdot v^{2}+W_{l} (2)

Where:

m - Mass of the cat, in kilograms.

g - Gravitational acceleration, in meters per square second.

h - Initial height of the cat, in meters.

v - Final speed of the cat, in meters per second.

If we know that m = 2.70\,kg, g = 9.807\,\frac{m}{s^{2}}, h = 5.20\,m and W_{l} = 120\,J, then the final speed of the cat is:

v = \sqrt{\frac{2\cdot (m\cdot g\cdot h-W_{l})}{m} }

v = \sqrt{2\cdot g\cdot h-\frac{W_{l}}{m} }

v \approx 7.586\,\frac{m}{s}

The speed of the cat when it hits the ground is approximately 7.586 meters per second.

4 0
2 years ago
The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
ludmilkaskok [199]

Answer: 8.1 x 10^24

Explanation:

I(t) = (0.6 A) e^(-t/6 hr)

I'll leave out units for neatness: I(t) = 0.6e^(-t/6)

If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).

For neatness let k = 1/(6x3600) = 4.63x10^-5, then:

I(t) = 0.6e^(-kt)

Providing t is in seconds, total charge Q in coulombs is

Q= ∫ I(t).dt evaluated from t=0 to t=∞.

Q = ∫(0.6e^(-kt)

= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.

= -(0.6/k)[e^-∞ - e^-0]

= -0.6/k[0 - 1]

= 0.6/k

= 0.6/(4.63x10^-5)

= 12958 C

Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.

5 0
2 years ago
Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
Drupady [299]

<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>

<span> </span>

6 0
2 years ago
Read 2 more answers
Two fun-loving otters are sliding toward each other on a muddy (and hence frictionless) horizontal surface. One of them, of mass
zvonat [6]

Answer:

(a). The magnitude and direction of the velocity of the otters after collision is 1.35 m/s toward left.

(b). The mechanical energy dissipates during this play is 226.98 J.

Explanation:

Given that,

Mass of one otter = 8.50 kg

Speed = 6.00 m/s

Mass of other = 5.75 kg

Speed = 5.50 m/s

(a). We need to calculate the magnitude and direction of the velocity of these free-spirited otters right after they collide

Using conservation of momentum

m_{1}v_{1}+m_{2}v_{2}=(m_{1}+m_{2})v

Put the value into the formula

8.50\times(-6.00)+5.75\times5.50=(8.50+5.75)\times v

v=\dfrac{-19.375}{14.25}

v=-1.35\ m/s

Negative sign shows the direction of motion of the object after collision is toward left.

(b). We need to calculate the initial kinetic energy

Using formula of kinetic energy

K.E_{i}=\dfrac{1}{2}m_{1}v_{1}^2+\dfrac{1}{2}m_{2}v_{2}^2

Put the value into the formula

K.E_{i}=\dfrac{1}{2}\times8.50\times(6.00)^2+\dfrac{1}{2}\times5.75\times(5.50)^2

K.E_{i}=239.96\ J

We need to calculate the final kinetic energy

Using formula of kinetic energy

K.E_{f}=\dfrac{1}{2}(m_{1}+m_{2})v^2

Put the value into the formula

K.E_{f}=\dfrac{1}{2}\times(8.50+5.75)\times(-1.35)^2

K.E_{f}=12.98\ J

We need to calculate the mechanical energy dissipates during this play

Using formula of loss of mechanical energy

\Delta K.E=K.E_{f}-K.E_{i}

Put the value into the formula

\Delta K.E=12.98-239.96

\Delta K.E=-226.98\ J

Negative sign shows the loss of mechanical energy

Hence, (a). The magnitude and direction of the velocity of the otters after collision is 1.35 m/s toward left.

(b). The mechanical energy dissipates during this play is 226.98 J.

8 0
2 years ago
Read 2 more answers
A quarterback throws a football at 40km/hr to a receiver 50yd away. How much time does it take the ball to reach the receiver
Akimi4 [234]

Given:

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

To find:

Time required by ball to reach the receiver = ?

Formula used:

speed = \frac{distance}{time}

Solution:

The speed of the ball is given by,

speed = \frac{distance}{time}

Thus,

Time = \frac{distance}{speed}

Distance = 50 yard = 45.72 meter

Speed = 40 km/hr = 11.11 m/s

Time = 4.12 second

Hence, ball reaches the receiver in 4.12 second.

3 0
2 years ago
Other questions:
  • A snowstorm was predicted in Chicago. Identify the possible upper air temperature, surface temperature, and air pressure of Chic
    11·2 answers
  • Jamie pushes a book off a table. The push is an example of a contact force because A. Jamie used energy. B. Jamie had to touch t
    11·2 answers
  • In the middle of the night you are standing a horizontal distance of 14.0 m from the high fence that surrounds the estate of you
    15·1 answer
  • A puck moves 2.35 m/s in a -22° direction. A hockey stick pushes it for 0.215 s, changing its velocity to 6.42 m/s in a 50.0° di
    14·1 answer
  • A research group at Dartmouth College has developed a Head Impact Telemetry (HIT) System that can be used to collect data about
    13·1 answer
  • Magnetic fields within a sunspot can be as strong as 0.4T. (By comparison, the earth's magnetic field is about 1/10,000 as stron
    6·1 answer
  • A majorette in the Rose Bowl Parade tosses a baton into the air with an initial angular velocity of 2.5 rev/s. If the baton unde
    11·1 answer
  • What is umax,c, the value of the maximum energy stored in the capacitor during one cycle?
    11·1 answer
  • Bernice draws an oxygen atom. She draws a small circle for the nucleus. Inside of the circle, she draws plus signs for protons a
    14·1 answer
  • Write a hypothesis about the effect of the angle of the track on the acceleration of the cart. Use the "if . . . then . . . beca
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!