Answer: B. Current x delivered 6.3 C more then Y
Explanation:
by making qualitative observations about the sodium hydroxide and phenolphthalein in solution
by comparing the given solution to other familiar solutions containing phenolphthalein
by designing an experiment to test phenolphthalein with other solutions
We can solve this problem using the force equation.
Force = Mass * Acceleration
2kg * 4m/s = 8 N
The net force required to keep the object moving at this speed and in this direction is 8 N.
KNOWN: Long, 30mm-diameter cylinder with embedded electrical heater; power required
to maintain a specified surface temperature for water and air flows.
FIND: Convection coefficients for the water and air flow convection processes, hw and ha,
respectively.
ASSUMPTIONS: Flow is cross-wise over cylinder which is very long in the direction
normal to flow.
The convection heat rate from the cylinder per unit length of the cylinder has
the form
q' = h*(pi*D)*(Ts-Tinf)
and solving for the heat transfer convection coefficient, find
Water
hw = q'/((pi*D)*(Ts-Tinf))
hw = (38*10^3 W/m) / ((pi*(0.030m))*(80-25)C)=
7330.77314 W/m^2K
Air
ha = (400W/m) / ((pi*(0.030m))*(80-25)C)=<span>
77.166033 </span> W/m^2K
COMMENTS: Note that the air velocity is 10 times that of the water flow, yet
hw ≈ 95 × ha.
These values for the convection coefficient are typical for forced convection heat transfer with
liquids and gases
Watter is a better convective heat transfer media than air