Answer:
<em>The Answer is both B and C, </em><em>since it has same options from the question given. Gear, slow her vehicle in a lower</em>
Explanation:
<em>The use of a lower gear in a vehicle helps a person to control their speed limits, when approaching a hill. it also saves the brakes too, using the brakes down a hill can overheat the gear and causes brake failures</em>
<em>By changing in into a lower gear and also letting the engine to do the brake work in a vehicle, the engine will absorb a force and slow the vehicle down, but in most cases brakes can be applied but with lesser pressure.</em>
<em>In this case Stella need to slow down by applying her lower gear down a hill to avoid accidents on the road, by controlling her speed limits and for safety precaution</em>
Answer:
The displacement of the spring due to weight is 0.043 m
Explanation:
Given :
Mass
Kg
Spring constant 
According to the hooke's law,

Where
force,
displacement
Here,
(
)
N
Now for finding displacement,

Here minus sign only represent the direction so we take magnitude of it.

m
Therefore, the displacement of the spring due to weight is 0.043 m
<span>As seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.
Let's assume that both Barbara and Neil start out at coordinate (0,0) and skate for exactly 1 second. Where do they end up?
Barbara is going due south at 5.9 m/s, so she's at (0,-5.9)
Neil is going due west at 1.4 m/s, so he's at (-1.4,0)
Now to see Neil's relative motion to Barbara, compute a translation that will place Barbara back at (0,0) and apply that same translation to Neil. Adding (0,5.9) to their coordinates will do this.
So the translated coordinates for Neil is now (-1.4, 5.9) and Barbara is at (0,0).
The magnitude of Neil's velocity as seen by Barbara is
sqrt((-1.4)^2 + 5.9^2) = sqrt(1.96 + 34.81) = sqrt(36.77) = 6.1 m/s
The angle of his vector relative to due west will be
atan(5.9/1.4) = atan(4.214285714) = 76.7 degrees
So as seen by Barbara, Neil is traveling at a velocity of 6.1 m/s at and angle of 76.7 degrees north from due west.</span>
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases