Answer:
the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow.
Explanation:
We can answer this exercise using Gauss's law
Ф = ∫ e . dA =
/ ε₀
field flow is directly proportionate to the charge found inside it, therefore if we place a Gaussian surface outside the plastic spherical shell. the flow must be zero since the charge of the sphere is equal induced in the shell, for which the net charge is zero. we see with this analysis that this shell meets the requirement to block the elective field
From the same Gaussian law it follows that if the sphere is not in the center, the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow , so no matter where the sphere is, the total induced charge is always equal to the charge on the sphere.
Explanation :
Takumi wears sunscreen and a hat each time he works in the yard. This is to protect himself with the strong radiation coming from the sun. UV rays that are coming from the sun are the main cause of skin cancer.
Stochastic effects are the effects that are caused by chance. Cancer is one of the main stochastic effects.
So, the correct option is (b) "the severity of stochastic effects, such as cancer".
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V