Answer:
It took the projectile 120 s to reach the maximum height.
Explanation:
Given;
maximum height of the projectile, s = 180 km = 180,000 m
initial speed of the projectile, u = 3 km/s = 3000 m/s
final velocity at maximum height, v = 0
Apply the following kinematic equation for average velocity of the projectile;

Therefore, it took the projectile 120 s to reach the maximum height.
Let loudness be L, distance be d, and k be the constant of variation such that the equation that would best represent the given above is,
L = k/(d^2)
For Case 1,
L1 = k/(d1^2)
For Case 2,
L2 = k/((d1/4)^2)
For k to be equal, L1 = 16L2.
Therefore, the loudness at your friend's position is 16 times that of yours.
Answer:
option B
Explanation:
given,
Force exerted by the hydraulic jack piston = F₁ = 250 N
diameter of piston, d₁ = 0.02 m
r₁ = 0.01 m
diameter of second piston, d₂ = 0.15 m
r₂ = 0.075 m
mass of the jack to lift = ?
now,




F₂ = 14062.5 N
F = m g


m = 1435 Kg
hence, the correct answer is option B
Answer:
232.641374 mph
Explanation:
A race car has a maximum speed of 0.104km/s
Let X represent the speed in miles per hour
Therefore the speed in miles per hour can be calculated as follows
1 km/s = 2,236.936292 mph
0.104km/s = X
X = 0.104 × 2,236.936292
X = 232.641374
Hence the speed in miles per hour is 232.641374 mph
Answer:
I am not a driver, but I think it's C.
Explanation: