Answer:
The electric field strength is 
Solution:
As per the question:
Area of the electrode, 
Charge, q = 50 nC = ![50\times 10^{- 9} C[/etx]Distance, x = 2 mm = [tex]2\times 10^{- 3} m](https://tex.z-dn.net/?f=50%5Ctimes%2010%5E%7B-%209%7D%20C%5B%2Fetx%5D%3C%2Fp%3E%3Cp%3EDistance%2C%20x%20%3D%202%20mm%20%3D%20%5Btex%5D2%5Ctimes%2010%5E%7B-%203%7D%20m)
Now,
To calculate the electric field strength, we first calculate the surface charge density which is given by:

Now, the electric field strength of the electrode is:

where



Answer:
Explanation:
position of centre of mass of door from surface of water
= 10 + 1.1 / 2
= 10.55 m
Pressure on centre of mass
atmospheric pressure + pressure due to water column
10 ⁵ + hdg
= 10⁵ + 10.55 x 1000 x 9.8
= 2.0339 x 10⁵ Pa
the net force acting on the door (normal to its surface)
= pressure at the centre x area of the door
= .9 x 1.1 x 2.0339 x 10⁵
= 2.01356 x 10⁵ N
pressure centre will be at 10.55 m below the surface.
When the car is filled with air or it is filled with water , in both the cases pressure centre will lie at the centre of the car .
Answer:
In primary cells, an electric potential develops through chemical action between the plates within the cell. Positively charged ions of zinc enter the acid and free electrons released from zinc atoms collect on the zinc plate, which results in a negative charge. At the same time, positively charged ions of hydrogen from the acid remove free electrons from the copper plate, which becomes positively charged. Through a conducting material connecting the plates, free electrons move from the zinc plate to the copper plate as long as the chemical reaction lasts.
Dry cells also develop electric potential via chemical actions within the cell. Free electrons removed from the carbon rod collect on a zinc can. The rod exhibits a positive charge and the can becomes negatively charged; this allows for an electric potential to develop between these two items. Through a conducting material connecting the can to the rod, free electrons move from the can to the rod as long as the conducting path exists.
Electric generators develop an electric potential via magnetic induction. Moving a conducting rod through a magnetic field that exists between the poles of a horseshoe magnet causes an electric potential to be set up in the rod. Free electrons move through this rod from one end to the other for as long as movement of the rod is maintained. The direction of this movement depends on whether the rod is moved across the lines of force in the magnetic field in either the opposite direction or the same direction. Generators usually consist of multiple conductors mounted on a cylinder that rotates in a magnetic field.
Thermocouples utilize heat to develop an electric potential. Two strips of different metals are connected at one end to form a junction and the other ends are kept apart. A heat source is applied to the junction; this causes each metal strip’s temperature to rise at the junction. The free ends aren’t as hot and electric charges are produced at these free ends. Because the strips consist of different materials, there's a difference of potential between these free ends; when connected by a conducting wire, the electrons can move through the pathway. The voltage that's produced will become greater as the difference in temperature between the free ends and the junction increases.
a. Increase
b. Decrease
c. Decrease
Since 1 Btu = 0.293 Wh, dividing the given amount of Wh by 0.293 will convert this amount into Btu. Therefore, 0.8 ÷ 0.293 = 2.73 Btu
365 days × 10 hours × 40 W = 146,000 Wh or 146 kWh
Explanation:
Penn Foster
Answer: The spring of the spring is 25 N/m.
Explanation:
Mass of the body = 25 g= 0.025 kg (1 kg = 1000 g)
Oscillation is 4 sec = 20
Oscillation in 1 sec =
Frequency of the vibration of the spring = 
Force constant can be calculated bu using the relation between the frequency and, mass and spring constant 'k'



The spring of the spring is 25 N/m.
Kinetic energy =0.5*mas*velocity^2
Joules =lg*m^2/s^2
1 miles= 1608.34 meters
1 hour= 3600 Sec
1 ounce =28.35g =0.02836 kg
What is a the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher at 96.0 mi/h?
Answer: KE=0.5m*v^2
=0.5*(5.12 o *0.02835 kg/1 ounce)* (95 miles/h*1609.34m/1 miles* 1hr/3600s^)2
131kg*m^2/s^2= 131 joules
By what factor with the kinetic energy change if the speed of the baseball is decreased to 55.0 mi/h?
Answer: KE=0.5*m*v^2
=0.5*(5.13 o*0.02835kg/1 ounce)*(55 miles/ h*1609.34m/1 mile*1 hr/3600s)^2
=44.0kg*m^2s^2=44.0 joules
131/44= 2.98, so decreased by a factor of approximately 3